scholarly journals Pharmacokinetic Analysis of Epithelial/Endothelial Cell Barriers in Microfluidic Bilayer Devices with an Air–Liquid Interface

Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 536
Author(s):  
Timothy S. Frost ◽  
Linan Jiang ◽  
Yitshak Zohar

As the range of applications of organs-on-chips is broadening, the evaluation of aerosol-based therapies using a lung-on-a-chip model has become an attractive approach. Inhalation therapies are not only minimally invasive but also provide optimal pharmacokinetic conditions for drug absorption. As drug development evolves, it is likely that better screening through use of organs-on-chips can significantly save time and cost. In this work, bio-aerosols of various compounds including insulin were generated using a jet nebulizer. The aerosol flows were driven through microfluidic bilayer devices establishing an air–liquid interface to mimic the blood–air barrier in human small airways. The aerosol flow in the microfluidic devices has been characterized and adjusted to closely match physiological values. The permeability of several compounds, including paracellular and transcellular biomarkers, across epithelial/endothelial cell barriers was measured. Concentration–time plots were established in microfluidic devices with and without cells; the curves were then utilized to extract standard pharmacokinetic parameters such as the area under the curve, maximum concentration, and time to maximum concentration. The cell barrier significantly affected the measured pharmacokinetic parameters, as compound absorption through the barrier decreases with its increasing molecular size. Aerosolizing insulin can lead to the formation of fibrils, prior to its entry to the microfluidic device, with a substantially larger apparent molecular size effectively blocking its paracellular transport. The results demonstrate the advantage of using lung-on-a-chip for drug discovery with applications such as development of novel inhaled therapies.

1997 ◽  
Vol 82 (1) ◽  
pp. 233-239 ◽  
Author(s):  
Mark J. Hill ◽  
Theodore A. Wilson ◽  
Rodney K. Lambert

Hill, Mark J., Theodore A. Wilson, and Rodney K. Lambert.Effects of surface tension and intraluminal fluid on the mechanics of small airways. J. Appl. Physiol.82(1): 233–239, 1997.—Airway constriction is accompanied by folding of the mucosa to form ridges that run axially along the inner surface of the airways. The muscosa has been modeled (R. K. Lambert. J. Appl. Physiol. 71: 666–673, 1991) as a thin elastic layer with a finite bending stiffness, and the contribution of its bending stiffness to airway elastance has been computed. In this study, we extend that work by including surface tension and intraluminal fluid in the model. With surface tension, the pressure on the inner surface of the elastic mucosa is modified by the pressure difference across the air-liquid interface. As folds form in the mucosa, intraluminal fluid collects in pools in the depressions formed by the folds, and the curvature of the air-liquid interface becomes nonuniform. If the amount of intraluminal fluid is small, <2% of luminal volume, the pools of intraluminal fluid are small, the air-liquid interface nearly coincides with the surface of the mucosa, and the area of the air-liquid interface remains constant as airway cross-sectional area decreases. In that case, surface energy is independent of airway area, and surface tension has no effect on airway mechanics. If the amount of intraluminal fluid is >2%, the area of the air-liquid interface decreases as airway cross-sectional area decreases, and surface tension contributes to airway compression. The model predicts that surface tension plus intraluminal fluid can cause an instability in the area-pressure curve of small airways. This instability provides a mechanism for abrupt airway closure and abrupt reopening at a higher opening pressure.


2009 ◽  
Vol 54 (2) ◽  
pp. 866-870 ◽  
Author(s):  
Hidetoshi Furuie ◽  
Yutaka Saisho ◽  
Takayoshi Yoshikawa ◽  
Jingoro Shimada

ABSTRACT S-013420 (EDP-420) is a novel bicyclolide (bridged bicyclic macrolide) antibacterial currently under development for the treatment of respiratory tract infections. The objective of the present study was to determine the plasma and intrapulmonary pharmacokinetic parameters of orally administered S-013420 in healthy volunteers. Twenty-eight healthy Japanese male subjects who never smoked were randomly allocated to seven groups of four subjects each who underwent bronchoalveolar lavage (BAL) at different times after dosing (2, 4, 6, 8, 10, 12, or 24 h). Blood samples were also taken at 0, 0.5, 1, 2, 4, 6, 8, 10, 12, 24, 48, and 72 h after dosing. The S-013420 concentrations in plasma, epithelial lining fluid (ELF), and alveolar macrophages (AMs) were measured by using a combined high-performance liquid chromatography-mass spectrometric technique. A pharmacokinetic analysis of the plasma, ELF, and AM S-013420 concentration profiles was performed. S-013420 was rapidly absorbed in plasma, and the mean time to the maximum concentration in plasma was 2.27 h. S-013420 was rapidly distributed to the ELF and was slowly distributed to AMs. The areas under the concentration-time curves from time zero to 24 h (AUC0-24) for S-013420 were 20.3 times higher in ELF than in plasma and 244.6 times higher in AMs than in plasma. The mean maximum concentration in plasma was higher in ELF than in plasma and was much higher in AM than in plasma. Furthermore, pharmacodynamic calculations were done by using the AUC0-24/MIC90 ratio for common pneumonia pathogens (Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis). The AUC0-24 for plasma/MIC90s for these four organisms were 41.8, 83.6, 1.3, and 20.9, respectively. The AUC0-24 for ELF/MIC90s were 849.6, 1,699.2, 26.6, and 424.8, respectively. Considering the good efficacy shown in a subsequent phase 2 study (S. Kohno, K. Yamaguchi, Y. Tanigawara, A. Watanabe, A. Aoki, Y. Niki, and J. Fujita, Abstr. 47th Intersci. Conf. Antimicrob. Agents Chemother., abstr. L-485), the good distribution of S-013420 in AMs and ELF observed in the present study is predictive of the good efficacy of S-013420 against respiratory pathogens.


Pneumologie ◽  
2011 ◽  
Vol 65 (12) ◽  
Author(s):  
M Selmansberger ◽  
AG Lenz ◽  
M Schmidmeir ◽  
O Eickelberg ◽  
T Stoeger ◽  
...  

2020 ◽  
Author(s):  
S. Runft ◽  
L. Burigk ◽  
A. Lehmbecker ◽  
K. Schöne ◽  
D. Waschke ◽  
...  

Author(s):  
Rohit Shukla ◽  
Tiratha Raj Singh

Abstract Background Alzheimer’s disease is a leading neurodegenerative disease worldwide and is the 6th leading cause of death in the USA. AD is a very complex disease and the drugs available in the market cannot fully cure it. The glycogen synthase kinase 3 beta plays a major role in the hyperphosphorylation of tau protein which forms the neurofibrillary tangles which is a major hallmark of AD. In this study, we have used a series of computational approaches to find novel inhibitors against GSK-3β to reduce the TAU hyperphosphorylation. Results We have retrieved a set of compounds (n=167,741) and screened against GSK-3β in four sequential steps. The resulting analysis of virtual screening suggested that 404 compounds show good binding affinity and can be employed for pharmacokinetic analysis. From here, we have selected 20 compounds those were good in terms of pharmacokinetic parameters. All these compounds were re-docked by using Autodock Vina followed by Autodock. Four best compounds were employed for MDS and here predicted RMSD, RMSF, Rg, hydrogen bonds, SASA, PCA, and binding-free energy. From all these analyses, we have concluded that out of 167,741 compounds, the ZINC15968620, ZINC15968622, and ZINC70707119 can act as lead compounds against HsGSK-3β to reduce the hyperphosphorylation. Conclusion The study suggested three compounds (ZINC15968620, ZINC15968622, and ZINC70707119) have great potential to be a drug candidate and can be tested using in vitro and in vivo experiments for further characterization and applications.


2021 ◽  
Vol 33 (6) ◽  
pp. 062103
Author(s):  
Meisam Pourali ◽  
Martin Kröger ◽  
Jan Vermant ◽  
Patrick D. Anderson ◽  
Nick O. Jaensson

Langmuir ◽  
2021 ◽  
Author(s):  
Jin Tae Park ◽  
Govind Paneru ◽  
Masao Iwamatsu ◽  
Bruce M. Law ◽  
Hyuk Kyu Pak

Sign in / Sign up

Export Citation Format

Share Document