pulmonary cells
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 32)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol 118 (50) ◽  
pp. e2111011118
Author(s):  
Jian Chen ◽  
Jun Fan ◽  
Zhilu Chen ◽  
Miaomiao Zhang ◽  
Haoran Peng ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), binds to host receptor angiotensin-converting enzyme 2 (ACE2) through its spike (S) glycoprotein, which mediates membrane fusion and viral entry. However, the expression of ACE2 is extremely low in a variety of human tissues, especially in the airways. Thus, other coreceptors and/or cofactors on the surface of host cells may contribute to SARS-CoV-2 infection. Here, we identified nonmuscle myosin heavy chain IIA (MYH9) as an important host factor for SARS-CoV-2 infection of human pulmonary cells by using APEX2 proximity-labeling techniques. Genetic ablation of MYH9 significantly reduced SARS-CoV-2 pseudovirus infection in wild type (WT) A549 and Calu-3 cells, and overexpression of MYH9 enhanced the pseudovirus infection in WT A549 and H1299 cells. MYH9 was colocalized with the SARS-CoV-2 S and directly interacted with SARS-CoV-2 S through the S2 subunit and S1-NTD (N-terminal domain) by its C-terminal domain (designated as PRA). Further experiments suggested that endosomal or myosin inhibitors effectively block the viral entry of SARS-CoV-2 into PRA-A549 cells, while transmembrane protease serine 2 (TMPRSS2) and cathepsin B and L (CatB/L) inhibitors do not, indicating that MYH9 promotes SARS-CoV-2 endocytosis and bypasses TMPRSS2 and CatB/L pathway. Finally, we demonstrated that loss of MYH9 reduces authentic SARS-CoV-2 infection in Calu-3, ACE2-A549, and ACE2-H1299 cells. Together, our results suggest that MYH9 is a candidate host factor for SARS-CoV-2, which mediates the virus entering host cells by endocytosis in an ACE2-dependent manner, and may serve as a potential target for future clinical intervention strategies.


2021 ◽  
Vol 15 (11) ◽  
pp. 2945-2947
Author(s):  
Ali Faheem ◽  
Misbah-ul- Qamar ◽  
Saveela Sadaqat ◽  
Muhammad Akram ◽  
Rizwan Masud ◽  
...  

Background: The Covid-19 pandemic has wreaked havoc throughout the world, with 150 million cases to date and over 3 million lives claimed worldwide. Aim: To explored the difference in levels of SaO2 of COVID-19 positive patients with and without COPD. Study design: Experimental Study. Methodology: From May2020 to 2021 patients admitted at Aziz Bhatti Shaheed hospital were included in this studies. COVID-19 was confirmed by RT-PCR.COPD was confirmed by using GOLD standard of diagnostic criteria. SaO2 was measured by using pulse oximeter and confirmed by blood samples measurement of SaO2. Statistical analysis: SPSS version 22 was used for data analysis. Paired sample t test was performed to evaluate the hypoxia levels between three pairs among the time distribution of 1st, 3rd, and 6th, day. Results: Levels of SaO2 were statistically significant between COVID-19 positive patients and COVID-19 positive patients with COPD. We calculated the levels of SaO2 at day1, 3rd, and 6th day and results were significant to show that COPD might be having some protective effect against hypoxia and that might be due to use of medications or adaptation of pulmonary cells. Conclusion: It was concluded that levels of SaO2 was significantly reduced in COVID-19 patients without COPD in comparison to patients without COPD. Keywords: COVID-19, COPD and SaO2.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Rebecca Burke ◽  
Chun Chu ◽  
Guo-Dong Zhou ◽  
Vasanta Putluri ◽  
Nagireddy Putluri ◽  
...  

Supplemental oxygen administration is frequently used in premature infants and adults with pulmonary insufficiency. NADPH quinone oxidoreductase (NQO1) protects cells from oxidative injury by decreasing reactive oxygen species (ROS). In this investigation, we tested the hypothesis that overexpression of NQO1 in BEAS-2B cells will mitigate cell injury and oxidative DNA damage caused by hyperoxia and that A-1221C single nucleotide polymorphism (SNP) in the NQO1 promoter would display altered susceptibility to hyperoxia-mediated toxicity. Using stable transfected BEAS-2B cells, we demonstrated that hyperoxia decreased cell viability in control cells (Ctr), but this effect was differentially mitigated in cells overexpressing NQO1 under the regulation of the CMV viral promoter, the wild-type NQO1 promoter (NQO1-NQO1), or the NQO1 promoter carrying the SNP. Interestingly, hyperoxia decreased the formation of bulky oxidative DNA adducts or 8-hydroxy-2 ′ -deoxyguanosine (8-OHdG) in Ctr cells. qPCR studies showed that mRNA levels of CYP1A1 and NQO1 were inversely related to DNA adduct formation, suggesting the protective role of these enzymes against oxidative DNA injury. In SiRNA experiments entailing the NQO1-NQO1 promoter, hyperoxia caused decreased cell viability, and this effect was potentiated in cells treated with CYP1A1 siRNA. We also found that hyperoxia caused a marked induction of DNA repair genes DDB2 and XPC in Ctr cells, supporting the idea that hyperoxia in part caused attenuation of bulky oxidative DNA lesions by enhancing nucleotide excision repair (NER) pathways. In summary, our data support a protective role for human NQO1 against oxygen-mediated toxicity and oxidative DNA lesions in human pulmonary cells, and protection against toxicity was partially lost in SNP cells. Moreover, we also demonstrate a novel protective role for CYP1A1 in the attenuation of oxidative cells and DNA injury. Future studies on the mechanisms of attenuation of oxidative injury by NQO1 should help in developing novel approaches for the prevention/treatment of ARDS in humans.


Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 235
Author(s):  
Shaiesh Yogeswaran ◽  
Thivanka Muthumalage ◽  
Irfan Rahman

Studies have shown that aerosols generated from flavored e-cigarettes contain Reactive Oxygen Species (ROS), promoting oxidative stress-induced damage within pulmonary cells. Our lab investigated the ROS content of e-cigarette vapor generated from disposable flavored e-cigarettes (vape bars) with and without nicotine. Specifically, we analyzed vape bars belonging to multiple flavor categories (Tobacco, Minty Fruit, Fruity, Minty/Cool (Iced), Desserts, and Drinks/Beverages) manufactured by various vendors and of different nicotine concentrations (0–6.8%). Aerosols from these vape bars were generated via a single puff aerosol generator; these aerosols were then individually bubbled through a fluorogenic solution to semi-quantify ROS generated by these bars in H2O2 equivalents. We compared the ROS levels generated by each vape bar as an indirect determinant of their potential to induce oxidative stress. Our results showed that ROS concentration (μM) within aerosols produced from these vape bars varied significantly among different flavored vape bars and identically flavored vape bars with varying nicotine concentrations. Furthermore, our results suggest that flavoring chemicals and nicotine play a differential role in generating ROS production in vape bar aerosols. Our study provides insight into the differential health effects of flavored vape bars, in particular cool (iced) flavors, and the need for their regulation.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1814
Author(s):  
Cyrille Mathieu ◽  
Franck Touret ◽  
Clémence Jacquemin ◽  
Yves L. Janin ◽  
Antoine Nougairède ◽  
...  

Our therapeutic arsenal against viruses is very limited and the current pandemic of SARS-CoV-2 highlights the critical need for effective antivirals against emerging coronaviruses. Cellular assays allowing a precise quantification of viral replication in high-throughput experimental settings are essential to the screening of chemical libraries and the selection of best antiviral chemical structures. To develop a reporting system for SARS-CoV-2 infection, we generated cell lines expressing a firefly luciferase maintained in an inactive form by a consensus cleavage site for the viral protease 3CLPro of coronaviruses, so that the luminescent biosensor is turned on upon 3CLPro expression or SARS-CoV-2 infection. This cellular assay was used to screen a metabolism-oriented library of 492 compounds to identify metabolic vulnerabilities of coronaviruses for developing innovative therapeutic strategies. In agreement with recent reports, inhibitors of pyrimidine biosynthesis were found to prevent SARS-CoV-2 replication. Among the top hits, we also identified the NADPH oxidase (NOX) inhibitor Setanaxib. The anti-SARS-CoV-2 activity of Setanaxib was further confirmed using ACE2-expressing human pulmonary cells Beas2B as well as human primary nasal epithelial cells. Altogether, these results validate our cell-based functional assay and the interest of screening libraries of different origins to identify inhibitors of SARS-CoV-2 for drug repurposing or development.


Author(s):  
Shaiesh Yogeswaran ◽  
Thivanka Muthumalage ◽  
Irfan Rahman

Studies have shown that aerosols generated from flavored e-cigarettes contain Reactive Oxygen Species (ROS), promoting oxidative stress-induced damage within pulmonary cells. Our lab investigated the ROS content of e-cigarette vapor generated from disposable vape bars, a product exempt from the Federal Drug Enforcement Agency’s (FDA) 2020 flavor ban. Specifically, we analyzed vape bars belonging to multiple flavor categories (Tobacco, Minty Fruit, Fruity, Minty/Menthol, Desserts, and Drinks), manufactured by various vendors and of various nicotine concentrations (0-6.8%). Aerosols from these flavored vape bars were generated by a single puff aerosol generator and individually bubbled through a fluorogenic solution to detect and semi-quantify ROS in H2O2 equivalents generated by the vape bars. We compared and contrasted the ROS levels generated by each flavor as an indirect determinant of oxidative stress potential by these disposable vape bars. Our results showed that ROS concentration (μM) of aerosols produced from the vape bars varied significantly between different flavors and a function of nicotine concentration. Likewise, our results suggest that flavoring chemicals and nicotine concentration play a role in alerting ROS production in e-cigarette aerosols. Our study provides insight into the differential health effects of flavored disposable vape bars and the need for their regulation.


2021 ◽  
Author(s):  
Maysa A R Brandao-Rangel ◽  
Dobroslav Melamed ◽  
Anamei Silva-Reis ◽  
Boris Brill ◽  
Lucas dos Santos Zamarioli ◽  
...  

Coronavirus disease 2019 (COVID-19), which is currently a global public health emergency and beyond vaccines as a prophylactic treatment, no specific and effective therapeutical treatments are available. COVID-19 induces a massive release of proinflammatory cytokines, which drives COVID-19 progression, severity, and mortality. In addition, bronchial epithelial cells are the first pulmonary cells activated by coronavirus-2 (SARS-Cov-2) leading to massive cytokine release, which can hyperactivate lung fibroblasts, resulting in pulmonary fibrosis, a phenomenon observed even in moderate COVID-19 survivors. This in vitro study tested the hypothesis that Virlaza, a herbal medicine, could inhibit the hyperactivation of human bronchial epithelial cells (BEAS-2B) and pulmonary fibroblasts (MRC-5) induced by SARS-Cov-2. BEAS-2B (5x104/mL/well) and MRC-5 (5x104/mL/well) cells were co-cultivated with 1ml of blood of a Sars-Cov-2 infected patient for 4 hours and Virlaza (1ug/mL) was added in the first minute of the co-culture. After 4 hours, the cells were recovered and used for analysis of cytotoxicity by MTT and for mRNA expression of P2X7 receptor E iNOS. The supernatant was used to measure ATP and cytokines. Sars-Cov-2 incubation resulted in increased release of ATP, IL-1beta, IL-6, IL-8, and TNF-alpha by BEAS-2B and MRC-5 cells (p<0.001). Treatment with Virlaza resulted in reduction of ATP, IL-1beta, IL-6, IL-8, and TNF-alpha release (p<0.001). In addition, Sars-Cov-2 incubation resulted in increased expression of P2X7 receptor and iNOS (p<0.001), which has been reversed by Virlaza (p<0.001). In conclusion, Virlaza presents important anti-inflammatory effects in the context of Sars-Cov-2 infection.


2021 ◽  
Vol 19 ◽  
Author(s):  
Araceli Diaz-Ruiz ◽  
Juan Nader-Kawachi ◽  
Francisco Calderón-Estrella ◽  
Alfonso Mata- Bermudez ◽  
Laura Alvarez-Mejia ◽  
...  

Background: Dapsone (4,4'-diamino-diphenyl sulfone) is a synthetic derivative of sulfones, with the antimicrobial activity described since 1937. It is also a drug traditionally used in dermatological therapies due to its anti-inflammatory effect. In recent years its antioxidant, antiexcitotoxic, and antiapoptotic effects have been described in different ischemic damage models, traumatic damage, and models of neurodegenerative diseases, such as Parkinson's (PD) and Alzheimer's diseases (AD). Finally, dapsone has proven to be a safe and effective drug as a protector against heart, renal and pulmonary cells damage; that is why it is now employed in clinical trials with patients as a neuroprotective therapy by regulating the main mechanisms of damage that lead to cell death. Objective: To provide a descriptive review of the evidence demonstrating the safety and therapeutic benefit of dapsone treatment, evaluated in animal studies and various human clinical trials. Methods: We conducted a review of PubMed databases looking for scientific research in animals and humans, oriented to demonstrate the effect of dapsone on regulating and reducing the main mechanisms of damage that lead to cell death. Conclusion: The evidence presented in this review shows that dapsone is a safe and effective neuro and cytoprotective treatment that should be considered for translational therapy.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mariateresa Coppola ◽  
Fabienne Jurion ◽  
Susan J. F. van den Eeden ◽  
Hermann Giresse Tima ◽  
Kees L. M. C. Franken ◽  
...  

AbstractNovel tuberculosis (TB)-vaccines preferably should (i) boost host immune responses induced by previous BCG vaccination and (ii) be directed against Mycobacterium tuberculosis (Mtb) proteins expressed throughout the Mtb infection-cycle. Human Mtb antigen-discovery screens identified antigens encoded by Mtb-genes highly expressed during in vivo murine infection (IVE-TB antigens). To translate these findings towards animal models, we determined which IVE-TB-antigens are recognised by T-cells following Mtb challenge or BCG vaccination in three different mouse strains. Eleven Mtb-antigens were recognised across TB-resistant and susceptible mice. Confirming previous human data, several Mtb-antigens induced cytokines other than IFN-γ. Pulmonary cells from susceptible C3HeB/FeJ mice produced less TNF-α, agreeing with the TB-susceptibility phenotype. In addition, responses to several antigens were induced by BCG in C3HeB/FeJ mice, offering potential for boosting. Thus, recognition of promising Mtb-antigens identified in humans validates across multiple mouse TB-infection models with widely differing TB-susceptibilities. This offers translational tools to evaluate IVE-TB-antigens as diagnostic and vaccine antigens.


Sign in / Sign up

Export Citation Format

Share Document