scholarly journals Towards Efficient Milling of Multi-Cavity Aeronautical Structural Parts Considering ACO-Based Optimal Tool Feed Position and Path

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Yupeng Xin ◽  
Yuanheng Li ◽  
Wenhui Li ◽  
Gangfeng Wang

Cavities are typical features in aeronautical structural parts and molds. For high-speed milling of multi-cavity parts, a reasonable processing sequence planning can significantly affect the machining accuracy and efficiency. This paper proposes an improved continuous peripheral milling method for multi-cavity based on ant colony optimization algorithm (ACO). Firstly, by analyzing the mathematical model of cavity corner milling process, the geometric center of the corner is selected as the initial tool feed position. Subsequently, the tool path is globally optimized through ant colony dissemination and pheromone perception for path solution of multi-cavity milling. With the advantages of ant colony parallel search and pheromone positive feedback, the searching efficiency of the global shortest processing path is effectively improved. Finally, the milling programming of an aeronautical structural part is taken as a sample to verify the effectiveness of the proposed methodology. Compared with zigzag milling and genetic algorithm (GA)-based peripheral milling modes in the computer aided manufacturing (CAM) software, the results show that the ACO-based methodology can shorten the milling time of a sample part by more than 13%.

2011 ◽  
Vol 101-102 ◽  
pp. 1031-1034
Author(s):  
Xian Yi Li ◽  
Jian Zhong Fu ◽  
Ji Qiang Li

Tool path generation, post-processing and verification and simulation of NC program are key technologies which are investigated in this research for manufacturing impellers. Generation of tool path aims at producing the cutting tool path. Post-processing transforms the cutter location file (CLSF file) of the tool path to the NC code which NC machine can recognize. Verification and simulation of NC program aims at proving the accuracy of program, thus the interference and collision can be avoided. When tool path is planned, increasing the machining efficiency during the rough and semi-finish milling process is the main consideration. Increasing machining accuracy is an important consideration for final finish milling.


Author(s):  
Eyyup Aras ◽  
Derek Yip-Hoi

Helical milling is a 3-axis machining operation where a cutting tool is feed along a helix. This operation is used in ramp-in and ramp-out moves when the cutting tool first engages the workpiece, for contouring and for hole machining. It is increasingly finding application as a means for roughing large amounts of material during high speed machining. Modeling the helical milling process requires cutter/workpiece engagements (CWEs) geometry in order to predict cutting forces. The calculation of these engagements is challenging due to the complicated and changing intersection geometry that occurs between the cutter and the in-process workpiece. In this paper we present a geometric modeling methodology for finding engagements during helical milling with flat end mills. A mapping technique has been developed that transforms a polyhedral model of the removal volume from Euclidean space to a parametric space defined by location along the tool path, engagement angle and the depth-of-cut. As a result, intersection operations are reduced to first order plane-plane intersections. This approach reduces the complexity of the cutter/workpiece intersections and also eliminates robustness problems found in standard polyhedral modeling and improves accuracy over the Z-buffer technique. The reported method has been implemented and tested using a combination of commercial applications. This paper highlights ongoing collaborative research into developing a Virtual Machining System.


2011 ◽  
Vol 201-203 ◽  
pp. 332-336
Author(s):  
Chun Lin Fu ◽  
Cong Kang Wang ◽  
Tie Gang Li ◽  
Wan Shan Wang

To resolve the problem of the parts deformation because of the milling force, a finite element model (FEM) of end milling process simulation in milling force field was established. On the base of FEM, we simulate the high-speed end milling type structure of aluminum alloy 7075 parts. We successfully predict the end milling force, obtain the effect between the upper and lower material to the milling force, and Mises stress and the tool length beyond the part.The simulation results show that the lower material can increase the milling force to upper, and upper material can decrease milling force to lower layer.The drilling tool length beyond the part is about 0.5 mm .


2019 ◽  
Vol 21 ◽  
pp. 28-32
Author(s):  
Zdeněk Prošek ◽  
Pavel Tesárek ◽  
Jan Trejbal

This article discusses the possibility of recycling of concrete waste using the high-speed milling method. The resulting of milling is micronize old concrete. Used old concrete was created by crushing of old concrete, which served as a structural concrete for the construction of a supporting column. Two level of milling process was used to recycle old concrete. The main use of waste is the possibility of partial replacement of commonly used binder and microfillers in concrete. For this reason, properties as particle size distribution, dynamic modulus of elasticity, flexural strength and compressive strength were observed. The aim is to replace as much cement as possible while maintaining mechanical properties.


2015 ◽  
Vol 1115 ◽  
pp. 47-50 ◽  
Author(s):  
Muhammad Riza ◽  
Erry Yulian Triblas Adesta ◽  
M. Yuhan Suprianto

Cutting temperature generated during high speed machining operations has been recognized as major factors influence tool performance and workpiece geometry. This paper aims to model the cutting temperature and to investigate cutting temperature behaviours when contour-in tool path strategy applied in high speed end milling process. The experiments were carried out on CNC vertical machining center by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. Results obtained indicate that cutting temperature is high in the initial stage of milling and at the corners region or turning points region. Portion of radial width of cut with workpiece in combination with the abrupt change of the milling path direction occur particularly in acute internal corners of a pocket leads to rise of cutting temperature.


2011 ◽  
Vol 418-420 ◽  
pp. 840-843
Author(s):  
Qing Hua Song ◽  
Xing Ai

The efficiency of the high-speed milling process is often limited by the occurrence of chatter. In order to predict the occurrence of chatter, accurate models are necessary. With the speed increasing, gyroscopic effect plays an important pole on the system behavior, including dynamic characteristic and rotating behavior. Considering the influence of gyroscopic effect on rotating behavior, an updated model for the milling process is presented which features as model of the equivalent profile of tool. In combination with this model, a nonlinear instantaneous cutting force model is proposed. The use of this updated equivalent profile of tool results in significant differences in the static uncut thickness compared to the traditional model.


2013 ◽  
Vol 706-708 ◽  
pp. 357-360
Author(s):  
Xin Gui Lin ◽  
Gen Miao Yi

According to the particularity of aluminium alloy thin-walled bowl, the programming strategies for high-speed milling process were analyzed, including the tool path strategies, leading in/out, and the tool path connections. A programming example was used to illustrate the practical application of Powermill software in high-speed milling of aluminium alloy thin-walled bowl.


Sign in / Sign up

Export Citation Format

Share Document