Modeling Methodology of Flexible Milling Force for Cycloid Gear on High Speed Peripheral Milling Process System

2009 ◽  
Vol 45 (09) ◽  
pp. 164 ◽  
Author(s):  
Houjun QI
2015 ◽  
Vol 799-800 ◽  
pp. 272-276
Author(s):  
Li Zhang ◽  
Wei Guo Gao ◽  
Da Wei Zhang

This study has developed a model in order to show the relationship between deflection of the low-rigidity processing system such like thin-walled component and the flexible milling force. The new model takes the deflection of cutter-workpiece system into account. The cutting force is analyzed simulatively by utilizing modified Newton–Raphson iterative algorithm. The simulative results show that the total normal deflection of workpiece–cutter system is the main factor affecting the change of cutting force.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Yupeng Xin ◽  
Yuanheng Li ◽  
Wenhui Li ◽  
Gangfeng Wang

Cavities are typical features in aeronautical structural parts and molds. For high-speed milling of multi-cavity parts, a reasonable processing sequence planning can significantly affect the machining accuracy and efficiency. This paper proposes an improved continuous peripheral milling method for multi-cavity based on ant colony optimization algorithm (ACO). Firstly, by analyzing the mathematical model of cavity corner milling process, the geometric center of the corner is selected as the initial tool feed position. Subsequently, the tool path is globally optimized through ant colony dissemination and pheromone perception for path solution of multi-cavity milling. With the advantages of ant colony parallel search and pheromone positive feedback, the searching efficiency of the global shortest processing path is effectively improved. Finally, the milling programming of an aeronautical structural part is taken as a sample to verify the effectiveness of the proposed methodology. Compared with zigzag milling and genetic algorithm (GA)-based peripheral milling modes in the computer aided manufacturing (CAM) software, the results show that the ACO-based methodology can shorten the milling time of a sample part by more than 13%.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3758 ◽  
Author(s):  
Jun Zha ◽  
Zelong Yuan ◽  
Hangcheng Zhang ◽  
Yipeng Li ◽  
Yaolong Chen

Improving the cutting efficiency is the major factor for improving the processing of nickel-based alloys. The novelty of this research is the calibrated SiAlON ceramic tool dry milling nickel-based alloy process. Firstly, the nickel-based alloy dry milling process was analyzed through the finite element method, and the required milling force and temperature were deduced. Then, several dry milling experiments were conducted with the milling temperature, and the milling force was monitored. The change in cutting speeds was from 400 m/min to 700 m/min. Experimental results verified the reduction of the dry milling force hypothesized by the simulation. The experiment also indicated that with a cut depth of 0.3 mm, cut width of 6 mm, and feed per tooth of 0.03 mm/z, when milling speed exceeded 527.52 m/min, the milling force began to decrease, and the milling temperature exceeded the nickel-based alloy softening temperature. This indicated that easy cutting could be realized under high-speed dry milling conditions. The interpolation curve about average temperature and average milling forces showed similarity to the tensile strength reduction with the rise of temperature.


Author(s):  
Hongji Zhang ◽  
Yuanyuan Ge ◽  
Hong Tang ◽  
Yaoyao Shi ◽  
Zengsheng Li

Within the scope of high speed milling process parameters, analyzed and discussed the effects of spindle speed, feed rate, milling depth and milling width on milling forces in the process of high speed milling of AM50A magnesium alloy. At the same time, the influence of milling parameters on the surface roughness of AM50A magnesium alloy has been revealed by means of the measurement of surface roughness and surface micro topography. High speed milling experiments of AM50A magnesium alloy were carried out by factorial design. Form the analysis of experimental results, The milling parameters, which have significant influence on milling force in high speed milling of AM50A magnesium alloy, are milling depth, milling width and feed speed, and the nonlinear characteristics of milling force and milling parameters. The milling force decreases with the increase of spindle in the given mill parameters. For the effects of milling parameters on surface quality of the performance, in the milling depth and feeding speed under certain conditions with the spindle speed increases the surface quality of AM50A magnesium alloy becomes better with the feed speed increases the surface quality becomes poor. When the spindle speed is greater than 12000r/min, the milling depth is less than 0.2mm, and the feed speed is less than 400mm/min, the milling surface quality can be obtained easily.


Author(s):  
Eyyup Aras ◽  
Derek Yip-Hoi

Helical milling is a 3-axis machining operation where a cutting tool is feed along a helix. This operation is used in ramp-in and ramp-out moves when the cutting tool first engages the workpiece, for contouring and for hole machining. It is increasingly finding application as a means for roughing large amounts of material during high speed machining. Modeling the helical milling process requires cutter/workpiece engagements (CWEs) geometry in order to predict cutting forces. The calculation of these engagements is challenging due to the complicated and changing intersection geometry that occurs between the cutter and the in-process workpiece. In this paper we present a geometric modeling methodology for finding engagements during helical milling with flat end mills. A mapping technique has been developed that transforms a polyhedral model of the removal volume from Euclidean space to a parametric space defined by location along the tool path, engagement angle and the depth-of-cut. As a result, intersection operations are reduced to first order plane-plane intersections. This approach reduces the complexity of the cutter/workpiece intersections and also eliminates robustness problems found in standard polyhedral modeling and improves accuracy over the Z-buffer technique. The reported method has been implemented and tested using a combination of commercial applications. This paper highlights ongoing collaborative research into developing a Virtual Machining System.


Author(s):  
Chenxi Wang ◽  
Xingwu Zhang ◽  
Baijie Qiao ◽  
Hongrui Cao ◽  
Xuefeng Chen

Dynamic milling forces have been widely used to monitor the condition of the milling process. However, it is very difficult to measure milling forces directly in operation, particularly in the industrial scene. In this paper, a dynamic force identification method in time domain, conjugate gradient least square (CGLS), is employed for reconstructing the time history of milling forces using acceleration signals in the peripheral milling process. CGLS is adopted for force identification because of its high accuracy and efficiency, which handles the ill-conditioned matrix well. In the milling process, the tool with high-speed rotation has different transfer functions between tool nose and accelerometers at different angular positions. Based on this fact, the averaged transfer functions are employed to reduce the error amplification of regularization processing for milling force identification. Moreover, in order to eliminate the effect of idling and high-frequency components on identification accuracy, the Butterworth band-pass filter is adopted for acceleration signals preprocessing. Finally, the proposed method is validated by milling tests under different cutting parameters. Experimental results demonstrate that the identified and measured milling forces are in good agreement on the whole time domain, which verifies the effectiveness and generalization of the indirect method for milling force measuring. In addition, the Tikhonov regularization method is also implemented for comparison, which shows that CGLS has higher accuracy and efficiency.


2011 ◽  
Vol 201-203 ◽  
pp. 332-336
Author(s):  
Chun Lin Fu ◽  
Cong Kang Wang ◽  
Tie Gang Li ◽  
Wan Shan Wang

To resolve the problem of the parts deformation because of the milling force, a finite element model (FEM) of end milling process simulation in milling force field was established. On the base of FEM, we simulate the high-speed end milling type structure of aluminum alloy 7075 parts. We successfully predict the end milling force, obtain the effect between the upper and lower material to the milling force, and Mises stress and the tool length beyond the part.The simulation results show that the lower material can increase the milling force to upper, and upper material can decrease milling force to lower layer.The drilling tool length beyond the part is about 0.5 mm .


2011 ◽  
Vol 314-316 ◽  
pp. 1167-1170
Author(s):  
Zhi Wei ◽  
Ji Hong Jia ◽  
Mei Lin Gu ◽  
Chao Zuo ◽  
Xing Zhen Jin

This paper describes the experimental system of milling force, the tool geometrical feature and the certain experimental condition in the section of experimental case, which also makes an explanation about the designing of experimental case and the analysis of the experimental data. It also represents the relationship between coefficients associated with the milling process and the milling force applied on the tool in detail. A finite element method is used to make an explicit analysis on the stress and deformation of the milling tool under the application of certain milling force. Finally, a summary is made to conclude the study and its results.


2013 ◽  
Vol 650 ◽  
pp. 139-144
Author(s):  
Chen Wei Shan ◽  
Ying Zhao ◽  
Dong Peng Cui

Along with the development of high speed machining technology, the ball end milling cutter’s application is more and more widely. An influence of four control parameters, namely feed, cutting depth, spindle speed and cutting width, on cutting forces is investigated. This paper focuses on experimental research of milling process of carbon fiber reinforced carbon matrix composite (C/C composite). The milling force prediction model for milling of composite using the carbide ball-end tools is built by orthogonal experiment. The experiment results show that : the reliability of the this prediction model is quite high, and the effect of milling speed on milling force is not very obvious, but the milling force increases with the increment of feed per tooth, milling depth and milling width. Using this information, a new prediction model for the milling forces is proposed that can be used for C/C composite milling.


Sign in / Sign up

Export Citation Format

Share Document