scholarly journals A Phosphorescence Quenching-Based Intelligent Dissolved Oxygen Sensor on an Optofluidic Platform

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 281
Author(s):  
Fang Wang ◽  
Longfei Chen ◽  
Jiaomeng Zhu ◽  
Xuejia Hu ◽  
Yi Yang

Continuous measurement of dissolved oxygen (DO) is essential for water quality monitoring and biomedical applications. Here, a phosphorescence quenching-based intelligent dissolved oxygen sensor on an optofluidic platform for continuous measurement of dissolved oxygen is presented. A high sensitivity dissolved oxygen-sensing membrane was prepared by coating the phosphorescence indicator of platinum(II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) on the surface of the microfluidic channels composed of polydimethylsiloxane (PDMS) microstructure arrays. Then, oxygen could be determined by its quenching effect on the phosphorescence, according to Stern–Volmer model. The intelligent sensor abandons complicated optical or electrical design and uses a photomultiplier (PMT) counter in cooperation with a mobile phone application program to measure phosphorescence intensity, so as to realize continuous, intelligent and real-time dissolved oxygen analysis. Owing to the combination of the microfluidic-based highly sensitive oxygen sensing membrane with a reliable phosphorescent intensity detection module, the intelligent sensor achieves a low limit of detection (LOD) of 0.01 mg/L, a high sensitivity of 16.9 and a short response time (22 s). Different natural water samples were successfully analyzed using the intelligent sensor, and results demonstrated that the sensor features a high accuracy. The sensor combines the oxygen sensing mechanism with optofluidics and electronics, providing a miniaturized and intelligent detection platform for practical oxygen analysis in different application fields.

Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 208
Author(s):  
Hong Dinh Duong ◽  
Jong Il Rhee

In this study, ratiometric fluorescent glucose and lactate biosensors were developed using a ratiometric fluorescent oxygen-sensing membrane immobilized with glucose oxidase (GOD) or lactate oxidase (LOX). Herein, the ratiometric fluorescent oxygen-sensing membrane was fabricated with the ratio of two emission wavelengths of platinum meso-tetra (pentafluorophenyl) porphyrin (PtP) doped in polystyrene particles and coumarin 6 (C6) captured into silica particles. The operation mechanism of the sensing membranes was based on (i) the fluorescence quenching effect of the PtP dye by oxygen molecules, and (ii) the consumption of oxygen levels in the glucose or lactate oxidation reactions under the catalysis of GOD or LOX. The ratiometric fluorescent glucose-sensing membrane showed high sensitivity to glucose in the range of 0.1–2 mM, with a limit of detection (LOD) of 0.031 mM, whereas the ratiometric fluorescent lactate-sensing membrane showed the linear detection range of 0.1–0.8 mM, with an LOD of 0.06 mM. These sensing membranes also showed good selectivity, fast reversibility, and stability over long-term use. They were applied to detect glucose and lactate in artificial human serum, and they provided reliable measurement results.


Author(s):  
YUTAKA AMAO ◽  
KEISUKE ASAI ◽  
ICHIRO OKURA

An optical oxygen sensor based on the phosphorescence quenching of palladium tetrakis(4-carboxyphenyl)porphyrin (PdTCPP) self-assembled film (SAM) on alumina plate was developed. The phosphorescence intensity of PdTCPP film decreased with increasing oxygen pressure, indicating that the film can be used as an optical oxygen-sensing device based on phosphorescence quenching by oxygen. The ratio I0/I100 as a sensitivity measure of the sensing film is estimated to be 17.7, showing that the film is a highly sensitive device for oxygen pressure. The film obeyed Stern–Volmer plots with a multisite model and possessed good operational stability and a fast response. Response times are 36 s for deoxygenated to oxygenated conditions and 148 s for the reverse conditions.


2017 ◽  
Vol 41 (14) ◽  
pp. 6646-6652 ◽  
Author(s):  
Ke Zhang ◽  
Lingling Luo ◽  
Wenjie Li ◽  
Honglin Zhang ◽  
Yi Zhang ◽  
...  

A ratiometric dissolved oxygen sensor synthesized via a swelling method exhibits high sensitivity, good reversibility and photo-stability.


Author(s):  
Franziska Beck ◽  
Carina Horn ◽  
Antje J. Baeumner

AbstractElectrochemical immunosensors enable rapid analyte quantification in small sample volumes, and have been demonstrated to provide high sensitivity and selectivity, simple miniaturization, and easy sensor production strategies. As a point-of-care (POC) format, user-friendliness is equally important and most often not combinable with high sensitivity. As such, we demonstrate here that a sequence of metal oxidation and reduction, followed by stripping via differential pulse voltammetry (DPV), provides lowest limits of detection within a 2-min automatic measurement. In exchanging gold nanoparticles (AuNPs), which dominate in the development of POC sensors, with silver nanoparticles (AgNPs), not only better sensitivity was obtained, but more importantly, the assay protocol could be simplified to match POC requirements. Specifically, we studied both nanoparticles as reporter labels in a sandwich immunoassay with the blood protein biomarker NT-proBNP. For both kinds of nanoparticles, the dose-response curves easily covered the ng∙mL−1 range. The mean standard deviation of all measurements of 17% (n ≥ 4) and a limit of detection of 26 ng∙mL−1 were achieved using AuNPs, but their detection requires addition of HCl, which is impossible in a POC format. In contrast, since AgNPs are electrochemically less stable, they enabled a simplified assay protocol and provided even lower LODs of 4.0 ng∙mL−1 in buffer and 4.7 ng∙mL−1 in human serum while maintaining the same or even better assay reliability, storage stability, and easy antibody immobilization protocols. Thus, in direct comparison, AgNPs clearly outperform AuNPs in desirable POC electrochemical assays and should gain much more attention in the future development of such biosensors.


Author(s):  
Peter A. Kavsak ◽  
Tara Edge ◽  
Chantele Roy ◽  
Paul Malinowski ◽  
Karen Bamford ◽  
...  

AbstractObjectivesTo analytically evaluate Ortho Clinical Diagnostics VITROS high-sensitivity cardiac troponin I (hs-cTnI) assay in specific matrices with comparison to other hs-cTn assays.MethodsThe limit of detection (LoD), imprecision, interference and stability testing for both serum and lithium heparin (Li-Hep) plasma for the VITROS hs-cTnI assay was determined. We performed Passing-Bablok regression analyses between sample types for the VITROS hs-cTnI assay and compared them to the Abbott ARCHITECT, Beckman Access and the Siemens ADVIA Centaur hs-cTnI assays. We also performed Receiver-operating characteristic curve analyses with the area under the curve (AUC) determined in an emergency department (ED)-study population (n=131) for myocardial infarction (MI).ResultsThe VITROS hs-cTnI LoD was 0.73 ng/L (serum) and 1.4 ng/L (Li-Hep). Stability up to five freeze-thaws was observed for the Ortho hs-cTnI assay, with the analyte stability at room temperature in serum superior to Li-Hep with gross hemolysis also affecting Li-Hep plasma hs-cTnI results. Comparison of Li-Hep to serum concentrations (n=202), yielded proportionally lower concentrations in plasma with the VITROS hs-cTnI assay (slope=0.85; 95% confidence interval [CI]:0.83–0.88). In serum, the VITROS hs-cTnI concentrations were proportionally lower compared to other hs-cTnI assays, with similar slopes observed between assays in samples frozen <−70 °C for 17 years (ED-study) or in 2020. In the ED-study, the VITROS hs-cTnI assay had an AUC of 0.974 (95%CI:0.929–0.994) for MI, similar to the AUCs of other hs-cTn assays.ConclusionsLack of standardization of hs-cTnI assays across manufacturers is evident. The VITROS hs-cTnI assay yields lower concentrations compared to other hs-cTnI assays. Important differences exist between Li-Hep plasma and serum, with evidence of stability and excellent clinical performance comparable to other hs-cTn assays.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Helen Yan ◽  
Sherry X. Chen ◽  
Lauren Y. Cheng ◽  
Alyssa Y. Rodriguez ◽  
Rui Tang ◽  
...  

AbstractWhole exome sequencing (WES) is used to identify mutations in a patient’s tumor DNA that are predictive of tumor behavior, including the likelihood of response or resistance to cancer therapy. WES has a mutation limit of detection (LoD) at variant allele frequencies (VAF) of 5%. Putative mutations called at ≤ 5% VAF are frequently due to sequencing errors, therefore reporting these subclonal mutations incurs risk of significant false positives. Here we performed ~ 1000 × WES on fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue biopsy samples from a non-small cell lung cancer patient, and identified 226 putative mutations at between 0.5 and 5% VAF. Each variant was then tested using NuProbe NGSure, to confirm the original WES calls. NGSure utilizes Blocker Displacement Amplification to first enrich the allelic fraction of the mutation and then uses Sanger sequencing to determine mutation identity. Results showed that 52% of the 226 (117) putative variants were disconfirmed, among which 2% (5) putative variants were found to be misidentified in WES. In the 66 cancer-related variants, the disconfirmed rate was 82% (54/66). This data demonstrates Blocker Displacement Amplification allelic enrichment coupled with Sanger sequencing can be used to confirm putative mutations ≤ 5% VAF. By implementing this method, next-generation sequencing can reliably report low-level variants at a high sensitivity, without the cost of high sequencing depth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlotta Peruzzi ◽  
Silvia Battistoni ◽  
Daniela Montesarchio ◽  
Matteo Cocuzza ◽  
Simone Luigi Marasso ◽  
...  

AbstractIn several biomedical applications, the detection of biomarkers demands high sensitivity, selectivity and easy-to-use devices. Organic electrochemical transistors (OECTs) represent a promising class of devices combining a minimal invasiveness and good signal transduction. However, OECTs lack of intrinsic selectivity that should be implemented by specific approaches to make them well suitable for biomedical applications. Here, we report on a biosensor in which selectivity and a high sensitivity are achieved by interfacing, in an OECT architecture, a novel gate electrode based on aptamers, Au nanoparticles and graphene hierarchically organized to optimize the final response. The fabricated biosensor performs state of the art limit of detection monitoring biomolecules, such as thrombin-with a limit of detection in the picomolar range (≤ 5 pM) and a very good selectivity even in presence of supraphysiological concentrations of Bovine Serum Albumin (BSA-1mM). These accomplishments are the final result of the gate hierarchic structure that reduces sterich indrance that could contrast the recognition events and minimizes false positive, because of the low affinity of graphene towards the physiological environment. Since our approach can be easily applied to a large variety of different biomarkers, we envisage a relevant potential for a large series of different biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document