High-performance dissolved oxygen sensors based on platinum(ii) porphyrin embedded in polystyrene beads

2017 ◽  
Vol 41 (14) ◽  
pp. 6646-6652 ◽  
Author(s):  
Ke Zhang ◽  
Lingling Luo ◽  
Wenjie Li ◽  
Honglin Zhang ◽  
Yi Zhang ◽  
...  

A ratiometric dissolved oxygen sensor synthesized via a swelling method exhibits high sensitivity, good reversibility and photo-stability.

2017 ◽  
Vol 5 (44) ◽  
pp. 11395-11402 ◽  
Author(s):  
Yongyun Mao ◽  
Qian Zhao ◽  
Jianchang Wu ◽  
Tingting Pan ◽  
Bingpu Zhou ◽  
...  

Organic–inorganic hybrid 3-(trimethoxysily)propylmethacrylate-co-platinum porphyrin-co-methacrylolsobutyl-polyhedral oligomeric silsesquioxane (TPMA-PtTPP-POSS) copolymer films were synthesized and applied as high-performance oxygen sensors.


The Analyst ◽  
2016 ◽  
Vol 141 (10) ◽  
pp. 3090-3097 ◽  
Author(s):  
Santiago Medina-Rodríguez ◽  
Sergey A. Denisov ◽  
Yanouk Cudré ◽  
Louise Male ◽  
Marta Marín-Suárez ◽  
...  

Reversible electronic energy transfer is used for sensing oxygen traces and results in very high sensitivity.


Author(s):  
Wei Zhao ◽  
Honglin Zhang ◽  
Li Xiao ◽  
Sai Chen ◽  
Yongpan Cheng ◽  
...  

2017 ◽  
Vol 46 (28) ◽  
pp. 9126-9130 ◽  
Author(s):  
Hidetaka Nakai ◽  
Masafumi Kuyama ◽  
Juncheol Seo ◽  
Takahiro Goto ◽  
Takahiro Matsumoto ◽  
...  

This paper presents (i) a high-performance Tb(iii)-based oxygen sensor (1Tb/PS) and (ii) a lanthanide(iii)-based colorimetric luminescent oxygen sensor (1TbSm/PS).


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 281
Author(s):  
Fang Wang ◽  
Longfei Chen ◽  
Jiaomeng Zhu ◽  
Xuejia Hu ◽  
Yi Yang

Continuous measurement of dissolved oxygen (DO) is essential for water quality monitoring and biomedical applications. Here, a phosphorescence quenching-based intelligent dissolved oxygen sensor on an optofluidic platform for continuous measurement of dissolved oxygen is presented. A high sensitivity dissolved oxygen-sensing membrane was prepared by coating the phosphorescence indicator of platinum(II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) on the surface of the microfluidic channels composed of polydimethylsiloxane (PDMS) microstructure arrays. Then, oxygen could be determined by its quenching effect on the phosphorescence, according to Stern–Volmer model. The intelligent sensor abandons complicated optical or electrical design and uses a photomultiplier (PMT) counter in cooperation with a mobile phone application program to measure phosphorescence intensity, so as to realize continuous, intelligent and real-time dissolved oxygen analysis. Owing to the combination of the microfluidic-based highly sensitive oxygen sensing membrane with a reliable phosphorescent intensity detection module, the intelligent sensor achieves a low limit of detection (LOD) of 0.01 mg/L, a high sensitivity of 16.9 and a short response time (22 s). Different natural water samples were successfully analyzed using the intelligent sensor, and results demonstrated that the sensor features a high accuracy. The sensor combines the oxygen sensing mechanism with optofluidics and electronics, providing a miniaturized and intelligent detection platform for practical oxygen analysis in different application fields.


2020 ◽  
Vol 23 (10) ◽  
pp. 1010-1022
Author(s):  
Emrah Dural

Aim and scope: Due to the serious toxicological risks and their widespread use, quantitative determination of phthalates in cosmetic products have importance for public health. The aim of this study was to develop a validated simple, rapid and reliable high-performance liquid chromatography (HPLC) method for the determination of phthalates which are; dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), di(2- ethylhexyl) phthalate (DEHP), in cosmetic products and to investigate these phthalate (PHT) levels in 48 cosmetic products marketing in Sivas, Turkey. Materials and Methods: Separation was achieved by a reverse-phase ACE-5 C18 column (4.6 x 250 mm, 5.0 μm). As the mobile phase, 5 mM KH2PO4 and acetonitrile were used gradiently at 1.5 ml min-1. All PHT esters were detected at 230 nm and the run time was taking 21 minutes. Results: This method showed the high sensitivity value the limit of quantification (LOQ) values for which are below 0.64 μg mL-1 of all phthalates. Method linearity was ≥0.999 (r2). Accuracy and precision values of all phthalates were calculated between (-6.5) and 6.6 (RE%) and ≤6.2 (RSD%), respectively. Average recovery was between 94.8% and 99.6%. Forty-eight samples used for both babies and adults were successfully analyzed by the developed method. Results have shown that, DMP (340.7 μg mL-1 ±323.7), DEP (1852.1 μg mL-1 ± 2192.0), and DBP (691.3 μg mL-1 ± 1378.5) were used highly in nail polish, fragrance and cream products, respectively. Conclusion: Phthalate esters, which are mostly detected in the content of fragrance, cream and nail polish products and our research in general, are DEP (1852.1 μg mL-1 ± 2192.0), DBP (691.3 μg mL-1 ± 1378.5) and DMP (340.7 μg mL-1 ±323.7), respectively. Phthalates were found in the content of all 48 cosmetic products examined, and the most detected phthalates in general average were DEP (581.7 μg mL-1 + 1405.2) with a rate of 79.2%. The unexpectedly high phthalate content in the examined cosmetic products revealed a great risk of these products on human health. The developed method is a simple, sensitive, reliable and economical alternative for the determination of phthalates in the content of cosmetic products, it can be used to identify phthalate esters in different products after some modifications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip E. Schaner ◽  
Ly-Binh-An Tran ◽  
Bassem I. Zaki ◽  
Harold M. Swartz ◽  
Eugene Demidenko ◽  
...  

AbstractDuring a first-in-humans clinical trial investigating electron paramagnetic resonance tumor oximetry, a patient injected with the particulate oxygen sensor Printex ink was found to have unexpected fluorodeoxyglucose (FDG) uptake in a dermal nodule via positron emission tomography (PET). This nodule co-localized with the Printex ink injection; biopsy of the area, due to concern for malignancy, revealed findings consistent with ink and an associated inflammatory reaction. Investigations were subsequently performed to assess the impact of oxygen sensors on FDG-PET/CT imaging. A retrospective analysis of three clinical tumor oximetry trials involving two oxygen sensors (charcoal particulates and LiNc-BuO microcrystals) in 22 patients was performed to evaluate FDG imaging characteristics. The impact of clinically used oxygen sensors (carbon black, charcoal particulates, LiNc-BuO microcrystals) on FDG-PET/CT imaging after implantation in rat muscle (n = 12) was investigated. The retrospective review revealed no other patients with FDG avidity associated with particulate sensors. The preclinical investigation found no injected oxygen sensor whose mean standard uptake values differed significantly from sham injections. The risk of a false-positive FDG-PET/CT scan due to oxygen sensors appears low. However, in the right clinical context the potential exists that an associated inflammatory reaction may confound interpretation.


Sign in / Sign up

Export Citation Format

Share Document