scholarly journals Enhanced Electrochemical Performance of Li4Ti5O12 by Niobium Doping for Pseudocapacitive Applications

Micro ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 28-42
Author(s):  
Jinka Chandrasekhar ◽  
Merum Dhananjaya ◽  
Obili M. Hussain ◽  
Alain Mauger ◽  
Christian M. Julien

Niobium-doped nanocrystalline Li4Ti5O12 (LTO) is synthesized by the solid-state reaction method, and the influence of dopant concentration (x = 2–10 mol%) on microstructural and electrochemical properties is studied. The X-ray diffraction and Raman patterns assessed the cubic spinel structure of Li4Ti5−xNbxO12 phase in all samples. Marginal changes in the lattice parameters, unit cell volume and dislocation density of LTO are observed with Nb substitution. The higher ionic radius of Nb induces a lattice expansion, which may be favorable for more ion intercalation/deintercalation. The SEM and TEM images display uniformly distributed nano-sized cubical particles. The represented (hkl) orientations of the SAED pattern and d-spacing (0.46 nm) between bright fringes confirm the well-crystallized LTO phase. The EDS and elemental mapping results demonstrate that Nb elements are uniformly doped in LTO with a proper stoichiometric ratio. The optimized 8%Nb-doped LTO electrode exhibits pseudocapacitive behavior and delivers a high specific capacitance of 497 F g−1 at a current density of 1 A g−1 with 92.3% of specific capacitance retention even after 5000 cycles.

2018 ◽  
Vol 281 ◽  
pp. 854-858
Author(s):  
Xi Cheng Gao ◽  
Jian Qiang Bi ◽  
Wei Li Wang ◽  
Guo Xun Sun ◽  
Xu Xia Hao ◽  
...  

NiFe2O4 powders were synthesized by a facile hydrothermal method at 180°C followed by a thermal treatment at 300°C. The phase composition and morphology were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the NiFe2O4 powders were well-crystallized, and they possessed a particle size in the range of 50-100 nm. The electrochemical property was characterized via cyclic voltammetry (CV) and constant current charge-discharge method. Encouragingly, the NiFe2O4 powders had an excellent electrochemical property, whose specific capacitance reached 266.84 F/g at the electric current density of 1 A/g due to the small particle size. Compared with other Fe-based metal compound oxides, NiFe2O4 has a better electrochemical performance, which can be widely used in the supercapacitor electrode materials.


2020 ◽  
Vol 13 (02) ◽  
pp. 2051005 ◽  
Author(s):  
Godlaveeti Sreenivasa Kumar ◽  
Somala Adinarayana Reddy ◽  
Hussen Maseed ◽  
Nagireddy Ramamanohar Reddy

In this work, we present the synthesis of a ternary CeO2–SnO2/rGO nanocomposite by using a facile one-step hydrothermal method. The as-synthesized composite was structural, chemical, morphological, elemental information studied by using different characterization techniques X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDAX) and transmission electron microscope (TEM). The CeO2–SnO2/rGO exhibited an excellent specific capacitance of 156[Formula: see text]F[Formula: see text][Formula: see text] at 0.5[Formula: see text]A/g in the presence of 3 M KOH solution. The synergic effect of CeO2, SnO2 and graphene composite coated on Ni foam endowed a high specific capacitance than their individual compounds. This work suggests that the novel ternary composite is a promising candidate for the high performance electrochemical energy storage and conversion systems.


2011 ◽  
Vol 399-401 ◽  
pp. 1451-1456 ◽  
Author(s):  
Gang Luo ◽  
Shi Chao Zhang ◽  
Hua Fang

A new two-step synthesis of composite electrode based on carbon nanotubes (CNTs) and cobalt oxide (Co3O4) by electrophoretic deposition of CNTs on Ni foam followed by electrodeposition of cobalt hydroxide on CNTs electrode and heat treatment to form Co3O4/CNTs composite electrode was developed. The structure and morphology of the electrodes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical performances were evaluated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Experimental results indicated that the nanocomposite electrodes exhibitd excellent pseudocapacitive behavior. In the potential range of 0.1- 0.45 V(vs SCE), the nanocomposite electrode showed a high specific capacitance of 867 F•g-1 in 6 M KOH electrolyte and a capacity retention of 90% after 1000 cycles at a current density of 1 A•g-1.


2011 ◽  
Vol 239-242 ◽  
pp. 1227-1230
Author(s):  
Zhan Jun Yu ◽  
Ying Dai ◽  
Wen Chen

Nanostructured α-Ni(OH)2/ mesoporous carbon composites were synthesized by a facile solvothermal method using sodium dodecyle sulfate as a soft template and urea as a hydrolysis-controlling agent. The obtained products were characterized by X-ray diffraction(XRD), and scanning electron microscopy(SEM). Electrochemical properties studies were carried out using cyclic voltammetry(CV) and galvanostaitc charge/discharge method. The results exhibited that the α-Ni(OH)2/ mesoporous carbon composites single electrode had high specific capacitance in KOH electrolyte. The maximum specific capacitance of the α-Ni(OH)2/ mesoporous carbon composites single electrode was up to 2191 F/g in 6 M KOH solution at a charge-discharge current density of 4 mA/cm2, when the mass percent of mesoporous carbon was 5%. It is suggested its potential application in the electrode material for supercapacitors.


2011 ◽  
Vol 230-232 ◽  
pp. 306-309 ◽  
Author(s):  
Zhan Jun Yu ◽  
Ying Dai ◽  
Wen Chen

Nanoflakes β-Ni(OH)2microspheres were successfully synthesized by a facile hydrothermal. The microstructures and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical properties studies were carried out using cyclic voltammetry (CV), galvanostaitc charge/discharge and electrochemical impedance spectroscopy methods, respectively. The results exhibited that the β-Ni(OH)2single electrode had high specific capacitance in KOH electrolyte. A maximum specific capacitance of 1929 F/g could be achieved in 6 M aqueous KOH with 0 to 0.4 V potential at a charge-discharge current density of 6 mA/cm2. Therefore, the obtained nanoflakes β-Ni(OH)2microspheres can be a potential application electrode material for supercapacitors.


2013 ◽  
Vol 634-638 ◽  
pp. 2638-2642 ◽  
Author(s):  
Da Zhang Zhu ◽  
Cheng Jiang ◽  
Dong Mei Sun

γ-MnOOH nanowires have been synthesized via a simple hydrothermal process without any template at relatively low temperature. The as-obtained sample was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the γ-MnOOH nanowires were investigated by cyclic voltammetry and galvanostatic charge-discharge methods. And a high specific capacitance calculated from the galvanostatic discharge curve was 191 F•g-1at the current density of 0.1 A•g-1, which remain a good specific capacitance of 143 F•g-1at the current density of 1.0 A•g-1. The electrochemical analysis results demonstrate that γ-MnOOH nanowires should be a good candidate as electrode material for supercapacitor.


2014 ◽  
Vol 1678 ◽  
Author(s):  
Shiang Teng ◽  
Ashutosh Tiwari

ABSTRACTThe electrochemical effects of embedding Cu nanoparticles in carbonized wood supercapacitor electrodes have been investigated. The nanoparticles were embedded using a solution method. Subsequent X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the Cu nanoparticles were anchored uniformly on the surface and deep within the pores of the electrode. Cyclic voltammetry measurements showed that the electrode has typical pseudocapacitive behavior, with two pairs of redox reaction peaks. The charge-discharge cycling also indicated that the redox charge transformation was a reversible process. An ultra-high specific capacitance of 888 F/g and an energy density of 123 Wh/kg were observed for the Cu loaded electrodes, as compared to the pure carbonized wood electrodes, which had a specific capacitance of 282 F/g and an energy density of 39 Wh/kg. Furthermore, both the carbonized wood and Cu loaded electrodes exhibited excellent long cycle abilities with at least 95% of the specific capacitance retained after 2000 cycles. These remarkable results demonstrate the potential for using Cu nanoparticle loaded carbonized wood as a high performance and environmentally friendly supercapacitor electrode material.


2009 ◽  
Vol 66 ◽  
pp. 280-283 ◽  
Author(s):  
Zhan Jun Yu ◽  
Ying Dai ◽  
Wen Chen

Co3O4 microspheres were synthesized by hydrothermal-precipitation method using NH3•H2O, H2O2, n-butanol and polyethylene glycol as precipitator, oxidant, assistant solvent and dispersant respectively. The products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the Co3O4 electrode were performed by cyclic voltammetry (CV) and galvanostaitc charge/discharge methods. The results exhibited that the Co3O4 single electrode had excellent stability, cyclic performance and high specific capacitance in KOH electrolyte. The specific capacitance as a single electrode was up to 653.74 F/g in the 6mol/L KOH solution with 0-0.4V potential at 2mA/cm2 current density. The effects of electrolyte concentrations and current densities on its capacitive performance were investigated. The Co3O4 prepared material is potential candidate for the preparation of power source devices.


2017 ◽  
Vol 266 ◽  
pp. 177-181 ◽  
Author(s):  
Luigi A. Dahonog ◽  
Joey D. Ocon ◽  
Mary Donnabelle L. Balela

Transition metal oxides and hydroxides, specifically nickel (Ni), are currently being studied for their pseudocapacitive behaviors due to their high specific capacitance and efficient redox reactions. In this study, nickel oxide (NiO) and nickel hydroxide [Ni (OH)2] hierarchical structures were grown on carbon fiber paper via hydrothermal treatment for a binder-free electrode for pseudocapacitor. Cyclic voltammetry was employed to determine the influence of annealing temperature on the specific capacitance of NiO-and/or Ni (OH)2 – carbon fiber electrodes. The NiO – carbon fiber electrode annealed at 400°C exhibited the highest specific capacitance of about 1993.12 F/g at a scan rate of 2 mV/s. The carbon fibers were fully covered by NiO platelets which possibly provide efficient transport of electrolyte, enhancing the capacitance.


2009 ◽  
Vol 79-82 ◽  
pp. 421-424 ◽  
Author(s):  
Zhan Jun Yu ◽  
Ying Dai ◽  
Wen Chen

Nanostructured flakes α-Ni(OH)2 microspheres were successfully synthesized by a facile solvothermal method using sodium dodecyl sulfate as a soft template and urea as a hydrolysis-controlling agent. The obtained products were characterized by Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties studies were carried out using cyclic voltammetry, galvanostaitc charge/discharge method, respectively. The results exhibited that the α-Ni(OH)2 single electrode had high specific capacitance in KOH electrolyte. A maximum specific capacitance of the α-Ni(OH)2 single electrode was up to 2398F/g in 6M KOH electrolyte concentration with 0 to 0.4V potential at 4mA/cm2 current density. Furthermore, the effects of the heat treatment temperatures on the electrochemical capacitance of the α-Ni(OH)2 electrodes were investigated.


Sign in / Sign up

Export Citation Format

Share Document