Solvothermal Synthesis of Nanostructured Flakes α-Ni(OH)2 Microspheres for Electrochemical Capacitors

2009 ◽  
Vol 79-82 ◽  
pp. 421-424 ◽  
Author(s):  
Zhan Jun Yu ◽  
Ying Dai ◽  
Wen Chen

Nanostructured flakes α-Ni(OH)2 microspheres were successfully synthesized by a facile solvothermal method using sodium dodecyl sulfate as a soft template and urea as a hydrolysis-controlling agent. The obtained products were characterized by Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties studies were carried out using cyclic voltammetry, galvanostaitc charge/discharge method, respectively. The results exhibited that the α-Ni(OH)2 single electrode had high specific capacitance in KOH electrolyte. A maximum specific capacitance of the α-Ni(OH)2 single electrode was up to 2398F/g in 6M KOH electrolyte concentration with 0 to 0.4V potential at 4mA/cm2 current density. Furthermore, the effects of the heat treatment temperatures on the electrochemical capacitance of the α-Ni(OH)2 electrodes were investigated.

2011 ◽  
Vol 239-242 ◽  
pp. 1227-1230
Author(s):  
Zhan Jun Yu ◽  
Ying Dai ◽  
Wen Chen

Nanostructured α-Ni(OH)2/ mesoporous carbon composites were synthesized by a facile solvothermal method using sodium dodecyle sulfate as a soft template and urea as a hydrolysis-controlling agent. The obtained products were characterized by X-ray diffraction(XRD), and scanning electron microscopy(SEM). Electrochemical properties studies were carried out using cyclic voltammetry(CV) and galvanostaitc charge/discharge method. The results exhibited that the α-Ni(OH)2/ mesoporous carbon composites single electrode had high specific capacitance in KOH electrolyte. The maximum specific capacitance of the α-Ni(OH)2/ mesoporous carbon composites single electrode was up to 2191 F/g in 6 M KOH solution at a charge-discharge current density of 4 mA/cm2, when the mass percent of mesoporous carbon was 5%. It is suggested its potential application in the electrode material for supercapacitors.


2020 ◽  
Vol 13 (02) ◽  
pp. 2051005 ◽  
Author(s):  
Godlaveeti Sreenivasa Kumar ◽  
Somala Adinarayana Reddy ◽  
Hussen Maseed ◽  
Nagireddy Ramamanohar Reddy

In this work, we present the synthesis of a ternary CeO2–SnO2/rGO nanocomposite by using a facile one-step hydrothermal method. The as-synthesized composite was structural, chemical, morphological, elemental information studied by using different characterization techniques X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDAX) and transmission electron microscope (TEM). The CeO2–SnO2/rGO exhibited an excellent specific capacitance of 156[Formula: see text]F[Formula: see text][Formula: see text] at 0.5[Formula: see text]A/g in the presence of 3 M KOH solution. The synergic effect of CeO2, SnO2 and graphene composite coated on Ni foam endowed a high specific capacitance than their individual compounds. This work suggests that the novel ternary composite is a promising candidate for the high performance electrochemical energy storage and conversion systems.


2011 ◽  
Vol 230-232 ◽  
pp. 306-309 ◽  
Author(s):  
Zhan Jun Yu ◽  
Ying Dai ◽  
Wen Chen

Nanoflakes β-Ni(OH)2microspheres were successfully synthesized by a facile hydrothermal. The microstructures and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical properties studies were carried out using cyclic voltammetry (CV), galvanostaitc charge/discharge and electrochemical impedance spectroscopy methods, respectively. The results exhibited that the β-Ni(OH)2single electrode had high specific capacitance in KOH electrolyte. A maximum specific capacitance of 1929 F/g could be achieved in 6 M aqueous KOH with 0 to 0.4 V potential at a charge-discharge current density of 6 mA/cm2. Therefore, the obtained nanoflakes β-Ni(OH)2microspheres can be a potential application electrode material for supercapacitors.


2013 ◽  
Vol 634-638 ◽  
pp. 2638-2642 ◽  
Author(s):  
Da Zhang Zhu ◽  
Cheng Jiang ◽  
Dong Mei Sun

γ-MnOOH nanowires have been synthesized via a simple hydrothermal process without any template at relatively low temperature. The as-obtained sample was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the γ-MnOOH nanowires were investigated by cyclic voltammetry and galvanostatic charge-discharge methods. And a high specific capacitance calculated from the galvanostatic discharge curve was 191 F•g-1at the current density of 0.1 A•g-1, which remain a good specific capacitance of 143 F•g-1at the current density of 1.0 A•g-1. The electrochemical analysis results demonstrate that γ-MnOOH nanowires should be a good candidate as electrode material for supercapacitor.


2021 ◽  
Vol 16 (1) ◽  
pp. 111-119
Author(s):  
Iman Abdullah ◽  
Riri Andriyanti ◽  
Dita Arifa Nurani ◽  
Yuni Krisyuningsih Krisnandi

Carbon dioxide is a highly potential renewable C1 source for synthesis of fine chemicals. Utilization of CO2 in carboxylation reactions requires catalysts, such as: nickel complex for CO2 activation. However, the use of homogeneous catalysts in the reaction is still less efficient due to the difficulty of separating the product and catalyst from reaction mixture. Therefore, it is necessary to heterogenize the nickel complex in a solid support such as mesoporous carbon. In this report, mesoporous carbon (MC) prepared from phloroglucinol and formaldehyde through soft template method was used as a solid support for Ni-phenanthroline complex (Ni-phen). The catalyst was characterized by Fourier Transform Infra Red (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscope - Energy Dispersive X-Ray (SEM-EDX), and Surface Area Analyzer (SAA). The result of SAA characterization showed that the pore diameter of MC was 6.7 nm and Ni-phen/MC was 5.1 nm which indicates that the materials have meso-size pores. Ni-phen/MC material was then used as a heterogeneous catalyst in the carboxylation reaction of phenylacetylene under an ambient CO2 pressure. The reactions were carried out in several variations of conditions such as temperature, time and catalyst types. Based on the results of the reaction, the best conditions were obtained at 25 °C for 8 h of reaction time using Ni-phen/MC catalyst.  Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2015 ◽  
Vol 103 (6) ◽  
Author(s):  
Mamdoh R. Mahmoud ◽  
Mohamed A. Soliman ◽  
Karam F. Allan

AbstractAdsorption behavior of samarium(III) radionuclides from aqueous solutions onto a novel polyacrylonitrile coated with sodium dodecyl sulfate (PAN@SDS), prepared by gamma radiation-induced polymerization, was studied in this work. The developed polymeric adsorbent was characterized by FT-IR, X-ray diffraction and N


2018 ◽  
Vol 281 ◽  
pp. 854-858
Author(s):  
Xi Cheng Gao ◽  
Jian Qiang Bi ◽  
Wei Li Wang ◽  
Guo Xun Sun ◽  
Xu Xia Hao ◽  
...  

NiFe2O4 powders were synthesized by a facile hydrothermal method at 180°C followed by a thermal treatment at 300°C. The phase composition and morphology were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the NiFe2O4 powders were well-crystallized, and they possessed a particle size in the range of 50-100 nm. The electrochemical property was characterized via cyclic voltammetry (CV) and constant current charge-discharge method. Encouragingly, the NiFe2O4 powders had an excellent electrochemical property, whose specific capacitance reached 266.84 F/g at the electric current density of 1 A/g due to the small particle size. Compared with other Fe-based metal compound oxides, NiFe2O4 has a better electrochemical performance, which can be widely used in the supercapacitor electrode materials.


2010 ◽  
Vol 654-656 ◽  
pp. 1186-1189 ◽  
Author(s):  
Bing Cong Zhang ◽  
Hong Ying Yu ◽  
Dong Bai Sun

Three different kinds of morphologies including spherical, chainlike and wirelike cobalt nanopowders, have been synthesized by chemical reduction of coblat chloride solution with hydrazine hydrate in basic solution. The products were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). It was revealed that the morphologies of the nanopowders depend on the concentration of Co2+ and the way of adding reducing agent (hydrazine hydrate). These two features affected the nucleation sites and the number of nucleuses. When the concentration of Co2+ was low, nucleuses formed in the soft template, while the reducing of the reducing agent added drop wise, a little number of nucleuses was formed. Based on that, a mechanism of formation, as a basis of gram-scale syntheses, was proposed.


2017 ◽  
Vol 20 (4) ◽  
pp. 175-181
Author(s):  
Xin Xi ◽  
Chao Yang ◽  
Lei Liu ◽  
ShiChao Zhu ◽  
Haicheng Cao ◽  
...  

ZnO nanostructures have been fabricated using electrodeposition method without any additive reagent and nucleation-layer. The influences of the applied voltage, temperature, electrolyte concentration, and time on the nanostructures of ZnO have been investigated using cyclic voltammety (CV), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The result shows that the 1-dimensional (1D) nanostructures tend to be formed at lower voltage and electrolyte concentration, while 2-dimentional (2D) nanostructures can be easily obtained at higher voltage and concentration. Although increasing temperature is helpful to grow 1D nanostructures, but excessive high temperature will destroy the ZnO nanostructures because of the high solubility of ZnO. Furthermore, we reveal the mechanism of the formation of ZnO nanostructures mainly depends on the competition between the hydroxylation and dehydration reaction. Our work is helpful for developing the photocatalytic and photodetection applications using different ZnO nanostructures.


2014 ◽  
Vol 904 ◽  
pp. 150-154
Author(s):  
Zhe Wei Yang ◽  
Xin Fan ◽  
Li Ang Guo ◽  
Wei Ting Wei

The graphene oxide/Fe3O4 composites were prepared by in situ precipitation method in this article. The microstructure and surface morphology of composites were characterized by Fourier transform infrared spectrum, X-ray diffraction and scanning electron microscopy, respectively. Cyclic voltammetry was employed for the determination of specific capacitance and other electrochemical performances. It was shown that there was the chemical bonding force between GO and Fe3O4 particles. And the surfaces of GO were wrapped by the Fe3O4 particles precipitated on the surfaces of GO sheets and no impurities were detected. Furthermore, the specific capacitance of GO/Fe3O4 composite electrodes decreased as Fe3O4 particles reduced and the redox peaks became weaker owing to the addition of nonconductive Fe3O4 particles.


Sign in / Sign up

Export Citation Format

Share Document