Solvothermal Synthesis of Nanostructured α-Ni(OH)2/ Mesoporous Carbon Composites for Supercapacitors

2011 ◽  
Vol 239-242 ◽  
pp. 1227-1230
Author(s):  
Zhan Jun Yu ◽  
Ying Dai ◽  
Wen Chen

Nanostructured α-Ni(OH)2/ mesoporous carbon composites were synthesized by a facile solvothermal method using sodium dodecyle sulfate as a soft template and urea as a hydrolysis-controlling agent. The obtained products were characterized by X-ray diffraction(XRD), and scanning electron microscopy(SEM). Electrochemical properties studies were carried out using cyclic voltammetry(CV) and galvanostaitc charge/discharge method. The results exhibited that the α-Ni(OH)2/ mesoporous carbon composites single electrode had high specific capacitance in KOH electrolyte. The maximum specific capacitance of the α-Ni(OH)2/ mesoporous carbon composites single electrode was up to 2191 F/g in 6 M KOH solution at a charge-discharge current density of 4 mA/cm2, when the mass percent of mesoporous carbon was 5%. It is suggested its potential application in the electrode material for supercapacitors.

2011 ◽  
Vol 230-232 ◽  
pp. 306-309 ◽  
Author(s):  
Zhan Jun Yu ◽  
Ying Dai ◽  
Wen Chen

Nanoflakes β-Ni(OH)2microspheres were successfully synthesized by a facile hydrothermal. The microstructures and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical properties studies were carried out using cyclic voltammetry (CV), galvanostaitc charge/discharge and electrochemical impedance spectroscopy methods, respectively. The results exhibited that the β-Ni(OH)2single electrode had high specific capacitance in KOH electrolyte. A maximum specific capacitance of 1929 F/g could be achieved in 6 M aqueous KOH with 0 to 0.4 V potential at a charge-discharge current density of 6 mA/cm2. Therefore, the obtained nanoflakes β-Ni(OH)2microspheres can be a potential application electrode material for supercapacitors.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850034 ◽  
Author(s):  
Congcong Hong ◽  
Xing Wang ◽  
Houlin Yu ◽  
Huaping Wu ◽  
Jianshan Wang ◽  
...  

Manganese dioxide nanowires (MnO2 NWs) anchored on carbon fiber cloth (CFC) were fabricated through a simple hydrothermal reaction and used as integrated electrodes for supercapacitor. The morphology-dependent electrochemical performance of MnO2 NWs was confirmed, yielding good capacitance performance with a high specific capacitance of 3.88[Formula: see text][Formula: see text] at a charge–discharge current density of 5[Formula: see text][Formula: see text] and excellent stability of 91.5% capacitance retention after 3000 cycles. Moreover, the composite electrodes were used to fabricate supercapacitors, which showed a high specific capacitance of 194[Formula: see text][Formula: see text] at a charge–discharge current density of 2[Formula: see text][Formula: see text] and high energy density of 0.108[Formula: see text][Formula: see text] at power density of 2[Formula: see text][Formula: see text], foreboding its potential application for high-performance supercapacitor.


2011 ◽  
Vol 694 ◽  
pp. 214-218
Author(s):  
Zhan Jun Yu ◽  
Bin Bin Wang ◽  
Rong Bao Liao ◽  
Yu Min Cui

Nanoflakes Co(OH)2 porous films were successfully synthesized by a facile electrochemical technique. The morphology was characterized by field emission scanning electron microscopy (FESEM). Electrochemical techniques such as cyclic voltammetry (CV), galvanostaitc charge/discharge and electrochemical impedance spectroscopy were used to study the effects of deposition temperatures on the capacitance of the films. The results exhibited that the Co(OH)2 films single electrode had high specific capacitance in KOH electrolyte. A maximum specific capacitance of 2780 F/g could be achieved for the Co(OH)2 film deposited at 50°C in 2 M aqueous KOH with 0 to 0.4V potential at a charge-discharge current density of 4 mA/cm2. Therefore, the obtained nanoflakes Co(OH)2 porous films can be a potential application electrode material for supercapacitors.


2009 ◽  
Vol 79-82 ◽  
pp. 421-424 ◽  
Author(s):  
Zhan Jun Yu ◽  
Ying Dai ◽  
Wen Chen

Nanostructured flakes α-Ni(OH)2 microspheres were successfully synthesized by a facile solvothermal method using sodium dodecyl sulfate as a soft template and urea as a hydrolysis-controlling agent. The obtained products were characterized by Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties studies were carried out using cyclic voltammetry, galvanostaitc charge/discharge method, respectively. The results exhibited that the α-Ni(OH)2 single electrode had high specific capacitance in KOH electrolyte. A maximum specific capacitance of the α-Ni(OH)2 single electrode was up to 2398F/g in 6M KOH electrolyte concentration with 0 to 0.4V potential at 4mA/cm2 current density. Furthermore, the effects of the heat treatment temperatures on the electrochemical capacitance of the α-Ni(OH)2 electrodes were investigated.


2011 ◽  
Vol 15 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Li Bai ◽  
Xingyan Wang ◽  
Xianyou Wang ◽  
Xiaoyan Zhang ◽  
Wanmei Long ◽  
...  

Carbon microbeads (CMB) were successfully prepared by glucose hydrothermal route in a stainless steel autoclave. The CMB was treated in concentrated nitric acid in order to gain the highly activated carbon microbeads (ACMB). The structure and surface morphology of as-prepared ACMB were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR), respectively. The electrochemical characteristics and capacitive behaviors of the ACMB were studied by cyclic voltammetry, current charge/discharge and cycle life measurements. The results show that the ACMB electrode has good electrochemical performance and the specific capacitance of ACMB is 291.9 F g-1 at a scanning rate of 1 mV s-1. Meanwhile, the specific capacitance of the button supercapacitor was as high as 75 F g-1 at a charge/discharge current density of 0.5 A g-1 and the loss of specific capacitance was nearly neglectable after 5000 cycles.


2012 ◽  
Vol 512-515 ◽  
pp. 1776-1779
Author(s):  
Jing Li ◽  
Hua Qing Xie ◽  
Yang Li

A new well-aligned nanofibers structure of polypyrrole (WAPPy) has been successfully grown on glassy carbon electrode by using a simple, reliable, and template-free electrochemical technique. The unique structure and design not only reduces the diffusion resistance of electrolytes in the electrode material but also enhances its electrochemical performance. Electrochemical supercapacitors based on WAPPy achieved a specific capacitance of 365 F g-1 with an applied charge/discharge current density of 1 A g-1 over a potential window of -0.5 to 0.5 V. For comparison, the granules PPy particles have been also electrochemical synthesized by using KCl as electrolyte (PPy-Cl). The specific capacitance of PPy-Cl electrode is 120 F g-1. The high specific capacitance and good stability of the WAPPy electrode has great potential in various applications such as energy storage.


2011 ◽  
Vol 239-242 ◽  
pp. 2968-2971 ◽  
Author(s):  
Zhan Jun Yu ◽  
Ying Dai ◽  
Wen Chen

Ni(OH)2/multiwalled carbon nanotubes (Ni(OH)2/MWNTs) nanocomposites were synthesized by hydrothermal method. The microstructures of such nanocomposites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical properties studies were carried out using cyclic voltammetry (CV), galvanostaitc charge/discharge and electrochemical impedance spectroscopy method. The presence of MWNTs network in the Ni(OH)2 significantly improved the electrical conductivity of the host Ni(OH)2 by the fromation of conducting network of MWNT and the active sites for the redox rection of the metal hydroxide. The specific capacitance of the new composites was significantly improved (MWNTs of 20 wt.%, 2144 F/g) compared to Ni(OH)2 (MWNTs of 0 wt.%, 1772 F/g) in 6 M KOH solution at a charge-discharge current density of 4 mA/cm2. Therefore, the Ni(OH)2/MWNTs nanocomposites can be a potential application electrode material for electrochemical capacitors.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2021 ◽  
Vol 16 (1) ◽  
pp. 111-119
Author(s):  
Iman Abdullah ◽  
Riri Andriyanti ◽  
Dita Arifa Nurani ◽  
Yuni Krisyuningsih Krisnandi

Carbon dioxide is a highly potential renewable C1 source for synthesis of fine chemicals. Utilization of CO2 in carboxylation reactions requires catalysts, such as: nickel complex for CO2 activation. However, the use of homogeneous catalysts in the reaction is still less efficient due to the difficulty of separating the product and catalyst from reaction mixture. Therefore, it is necessary to heterogenize the nickel complex in a solid support such as mesoporous carbon. In this report, mesoporous carbon (MC) prepared from phloroglucinol and formaldehyde through soft template method was used as a solid support for Ni-phenanthroline complex (Ni-phen). The catalyst was characterized by Fourier Transform Infra Red (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscope - Energy Dispersive X-Ray (SEM-EDX), and Surface Area Analyzer (SAA). The result of SAA characterization showed that the pore diameter of MC was 6.7 nm and Ni-phen/MC was 5.1 nm which indicates that the materials have meso-size pores. Ni-phen/MC material was then used as a heterogeneous catalyst in the carboxylation reaction of phenylacetylene under an ambient CO2 pressure. The reactions were carried out in several variations of conditions such as temperature, time and catalyst types. Based on the results of the reaction, the best conditions were obtained at 25 °C for 8 h of reaction time using Ni-phen/MC catalyst.  Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


Sign in / Sign up

Export Citation Format

Share Document