scholarly journals Salmonella Genomic Island 1 is Broadly Disseminated within Gammaproteobacteriaceae

2020 ◽  
Vol 8 (2) ◽  
pp. 161 ◽  
Author(s):  
Max Laurence Cummins ◽  
Mohammad Hamidian ◽  
Steven Philip Djordjevic

Salmonella genomic island 1 (SGI1) is an integrative mobilisable element that plays an important role in the capture and spread of multiple drug resistance. To date, SGI1 has been found in clinical isolates of Salmonella enterica serovars, Proteus mirabilis, Morganella morganii, Acinetobacter baumannii, Providencia stuartii, Enterobacter spp, and recently in Escherichia coli. SGI1 preferentially targets the 3´-end of trmE, a conserved gene found in the Enterobacteriaceae and among members of the Gammaproteobacteria. It is, therefore, hypothesised that SGI1 and SGI1-related elements (SGI1-REs) may have been acquired by diverse bacterial genera. Here, Bitsliced Genomic Signature Indexes (BIGSI) was used to screen the NCBI Sequence Read Archive (SRA) for putative SGI1-REs in Gammaproteobacteria. Novel SGI-REs were identified in diverse genera including Cronobacter spp, Klebsiella spp, and Vibrio spp and in two additional isolates of Escherichia coli. An extensively drug-resistant human clonal lineage of Klebsiella pneumoniae carrying an SGI1-RE in the United Kingdom and an SGI1-RE that lacks a class 1 integron were also identified. These findings provide insight into the origins of this diverse family of clinically important genomic islands and expand the knowledge of the potential host range of SGI1-REs within the Gammaproteobacteria.

2016 ◽  
Vol 60 (8) ◽  
pp. 5068-5071 ◽  
Author(s):  
Nicole Stoesser ◽  
Anna E. Sheppard ◽  
Gisele Peirano ◽  
Robert P. Sebra ◽  
Tarah Lynch ◽  
...  

ABSTRACTTheblaIMP-14carbapenem resistance gene has largely previously been observed inPseudomonas aeruginosaandAcinetobacterspp. As part of global surveillance and sequencing of carbapenem-resistantEscherichia coli, we identified a sequence type 131 strain harboringblaIMP-14within a class 1 integron, itself nested within an ∼54-kb multidrug resistance region on an epidemic IncA/C2plasmid. The emergence ofblaIMP-14in this context in the ST131 lineage is of potential clinical concern.


2003 ◽  
Vol 47 (11) ◽  
pp. 3640-3643 ◽  
Author(s):  
Angelika Miko ◽  
Karin Pries ◽  
Andreas Schroeter ◽  
Reiner Helmuth

ABSTRACT The presence of integrons in 85 multiresistant German isolates of the predominating Salmonella enterica subsp. enterica serovar Paratyphi B dT+ clone was investigated. All isolates possessed a chromosomally located Tn7-like class 2 integron carrying the same dfrA1-sat1-aadA1 array of gene cassettes. Only four isolates (4.7%) revealed an additional class 1 integron with two strains each containing the aadA1 or dfrA1-aadA1 gene cassettes.


2020 ◽  
Vol 75 (9) ◽  
pp. 2503-2507
Author(s):  
Chang-Wei Lei ◽  
Tian-Ge Yao ◽  
Jia Yan ◽  
Bo-Yang Li ◽  
Xue-Chun Wang ◽  
...  

Abstract Objectives To characterize the MDR genomic islands (GIs) in Proteus mirabilis isolates. Methods Two P. mirabilis strains (C55 and C74) of chicken origin were subjected to WGS (HiSeq and PacBio) and the MDR GIs were determined. Results P. mirabilis strains C55 and C74 are clonal strains and harbour different Proteus genomic island 2 (PGI2) variants (PGI2-C55 and PGI2-C74). The MDR region of PGI2-C55 is composed of two class 1 integrons, separated by a region containing seven copies of IS26 and eight resistance genes, including blaCTX-M-3 and fosA3. The region in PGI2-C74 is a complete In4-type class 1 integron, harbouring five gene cassettes (dfrA16, blaCARB-2, aadA2, cmlA1 and aadA1). In addition, C55 and C74 carry an SXT/R391 integrative and conjugative element (ICEPmiJpn1), harbouring blaCMY-2, and a novel 50.46 kb genomic resistance island named PmGRI1-C55. PmGRI1-C55 harbours a tyrosine-type recombinase/integrase that might be responsible for the integration of PmGRI1-C55 at the 3′ end of tRNA-Sec. It carries an MDR region derived from Tn2670 that harbours a Tn21 region and carries six resistance genes (catA1, blaTEM-1b, aphA1a, sul2, strA and strB). Blast analysis showed diverse PmGRI1 variants in P. mirabilis and Escherichia coli strains. Conclusions The finding of the two new PGI2 variants highlights that the homologous recombination between shared components of class 1 integrons and transposition by IS26 promote the diversity of MDR regions in PGI2. PmGRI1 is a new GI that carries various resistance genes identified in P. mirabilis and E. coli.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Chang-Wei Lei ◽  
Yan-Peng Chen ◽  
Ling-Han Kong ◽  
Jin-Xin Zeng ◽  
Yong-Xiang Wang ◽  
...  

ABSTRACT A novel 61,578-bp genomic island named Proteus genomic island 2 (PGI2) was characterized in Proteus mirabilis of swine origin in China. The 23.85-kb backbone of PGI2 is related to those of Salmonella genomic island 1 and Acinetobacter genomic island 1. The multidrug resistance (MDR) region of PGI2 is a complex class 1 integron containing 14 different resistance genes. PGI2 was conjugally mobilized in trans to Escherichia coli in the presence of a conjugative IncC helper plasmid.


2008 ◽  
Vol 52 (7) ◽  
pp. 2529-2537 ◽  
Author(s):  
Renee S. Levings ◽  
Steven P. Djordjevic ◽  
Ruth M. Hall

ABSTRACT Multiply antibiotic-resistant Salmonella enterica serovar Emek strains isolated in Australia and the United Kingdom had similar features, suggesting that they all belong to a single clone. These strains all contain SGI2 (formerly SGI1-J), an independently formed relative of Salmonella genomic island SGI1. In SGI2, the complex class 1 integron which includes all of the resistance genes is not located between tnpR (S027) and S044 as in SGI1 and SGI1 variants. Instead, tnpR was found to be adjacent to S044, and the integron is located 6.9 kb away, within S023. In both SGI1 and SGI2, the 25-bp inverted repeats that mark the outer ends of class 1 integrons are flanked by a 5-bp duplication of the target, indicating that incorporation of the integron was by transposition. A small number of differences between the sequences of the backbones of SGI1 and SGI2 were also found. Hence, a class 1 integron has entered two different variants of the SGI backbone to generate two distinct lineages. Despite this, the integron in SGI2 has a complex structure that is very similar to that of In104 in SGI1. Differences are in the cassette arrays and in the gene which encodes the chloramphenicol and florfenicol efflux protein. The CmlA9 protein, encoded by InEmek, is only 92.8% identical to FloRc (also a CmlA family protein) from SGI1. A variant form of SGI2, SGI2-A, which has lost the tet(G) and cmlA9 resistance determinants, was found in one strain.


2022 ◽  
Vol 98 (6) ◽  
pp. 671-684
Author(s):  
P. V. Slukin ◽  
E. I. Astashkin ◽  
E. M. Aslanyan ◽  
M. G. Ershova ◽  
E. D. Poletaeva ◽  
...  

Objective. Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) affect 150 million people annually.Purpose: Characteristics of non-hospital strains of UPEC isolated from patients with UTI in Yaroslavl in 2016– 2017.Materials and methods. Susceptibility of UPEC strains (n = 20) to antibacterials was measured by the serial dilution method; the antibiotic resistance and virulence genes, phylogroups, O-serogroups and sequence types were identified by PCR and whole genome sequencing. The virulence of the strains was studied using the model of Galleria mellonella larvae.Results. UPEC strains were classified as resistant (n = 11) and multi-drug resistant (n = 9) pathogens. Betalactamase genes blaTEM (n = 10), blaCTX-M (n = 6), class 1 integrons (n = 8), and gene cassettes dfrA17-aadA5 (n = 2), dfrA1 (n = 1) and aacA4-cmlA1 (n = 1) were identified. UPEC-virulence genetic determinants coding adhesins fimH, papG, sfaS, focG, afa/draBC, csgA, siderophores iroN, fyuA, iutA, counteracting factors of host immunity ompT, traT, toxins hlyA, cnf1, usp, capsule transporter kpsMTII, colicin cvaC, and pathogenicity islands I536, II536, III536, IV536, IIJ96 и IICFT073 were detected. Highly virulent and slightly virulent for G. mellonella larvae UPEC strains were obtained with LD50 104–105 and 106–107 CFU, respectively. The phylogroups A, B1, B2, E and F, serogroups О2, О4, О6, O9, O11, О15, О18, О25, О75 and O89, known sequence types ST14, ST58, ST69, ST73, ST93, ST127, ST131, ST-141, ST165, ST297, ST457, ST537, ST744, ST1434 and novel ST9239 and ST10102 were revealed.Conclusions. The identified genetic diversity of non-hospital UPEC strains is consistent with the observed global trend in the spread of human pathogens, which are characterized with both high virulence and multiple drug resistance. This makes possible to assess prospectively the current epidemiological situation, give a forecast for its development in the future, as well as determine the optimal therapeutic options.


2013 ◽  
Vol 62 (11) ◽  
pp. 1728-1734 ◽  
Author(s):  
Dongguo Wang ◽  
Enping Hu ◽  
Jiayu Chen ◽  
Xiulin Tao ◽  
Katelyn Gutierrez ◽  
...  

A total of 69 strains of Escherichia coli from patients in the Taizhou Municipal Hospital, China, were isolated, and 11 strains were identified that were resistant to bacitracin, chloramphenicol, tetracycline and erythromycin. These strains were PCR positive for at least two out of three genes, ybjG, dacC and mdfA, by gene mapping with conventional PCR detection. Conjugation experiments demonstrated that these genes existed in plasmids that conferred resistance. Novel ybjG and dacC variants were isolated from E. coli strains EC2163 and EC2347, which were obtained from the sputum of intensive care unit patients. Genetic mapping showed that the genes were located on 8200 kb plasmid regions flanked by EcoRI restriction sites. Three distinct genetic structures were identified among the 11 PCR-positive strains of E. coli, and two contained the novel ybjG and dacC variants. The putative amino acid differences in the ybjG and dacC gene variants were characterized. These results provide evidence for novel variants of ybjG and dacC, and suggest that multiple drug resistance in hospital strains of E. coli depends on the synergistic function of ybjG, dacC and mdfA within three distinct genetic structures in conjugative plasmids.


1999 ◽  
Vol 43 (12) ◽  
pp. 2925-2929 ◽  
Author(s):  
Lydia Bass ◽  
Cynthia A. Liebert ◽  
Margie D. Lee ◽  
Anne O. Summers ◽  
David G. White ◽  
...  

ABSTRACT Antibiotic resistance among avian bacterial isolates is common and is of great concern to the poultry industry. Approximately 36% (n = 100) of avian, pathogenic Escherichia coli isolates obtained from diseased poultry exhibited multiple-antibiotic resistance to tetracycline, oxytetracycline, streptomycin, sulfonamides, and gentamicin. Clinical avian E. coli isolates were further screened for the presence of markers for class 1 integrons, the integron recombinase intI1 and the quaternary ammonium resistance gene qacEΔ1, in order to determine the contribution of integrons to the observed multiple-antibiotic resistance phenotypes. Sixty-three percent of the clinical isolates were positive for the class 1 integron markersintI1 and qacEΔ1. PCR analysis with the conserved class 1 integron primers yielded amplicons of approximately 1 kb from E. coli isolates positive for intI1 andqacEΔ1. These PCR amplicons contained the spectinomycin-streptomycin resistance gene aadA1. Further characterization of the identified integrons revealed that many were part of the transposon Tn21, a genetic element that encodes both antibiotic resistance and heavy-metal resistance to mercuric compounds. Fifty percent of the clinical isolates positive for the integron marker gene intI1 as well as for theqacEΔ1 and aadA1 cassettes also contained the mercury reductase gene merA. The correlation between the presence of the merA gene with that of the integrase and antibiotic resistance genes suggests that these integrons are located in Tn21. The presence of these elements among avianE. coli isolates of diverse genetic makeup as well as inSalmonella suggests the mobility of Tn21 among pathogens in humans as well as poultry.


Sign in / Sign up

Export Citation Format

Share Document