Characterization of novel ybjG and dacC variants in Escherichia coli

2013 ◽  
Vol 62 (11) ◽  
pp. 1728-1734 ◽  
Author(s):  
Dongguo Wang ◽  
Enping Hu ◽  
Jiayu Chen ◽  
Xiulin Tao ◽  
Katelyn Gutierrez ◽  
...  

A total of 69 strains of Escherichia coli from patients in the Taizhou Municipal Hospital, China, were isolated, and 11 strains were identified that were resistant to bacitracin, chloramphenicol, tetracycline and erythromycin. These strains were PCR positive for at least two out of three genes, ybjG, dacC and mdfA, by gene mapping with conventional PCR detection. Conjugation experiments demonstrated that these genes existed in plasmids that conferred resistance. Novel ybjG and dacC variants were isolated from E. coli strains EC2163 and EC2347, which were obtained from the sputum of intensive care unit patients. Genetic mapping showed that the genes were located on 8200 kb plasmid regions flanked by EcoRI restriction sites. Three distinct genetic structures were identified among the 11 PCR-positive strains of E. coli, and two contained the novel ybjG and dacC variants. The putative amino acid differences in the ybjG and dacC gene variants were characterized. These results provide evidence for novel variants of ybjG and dacC, and suggest that multiple drug resistance in hospital strains of E. coli depends on the synergistic function of ybjG, dacC and mdfA within three distinct genetic structures in conjugative plasmids.

1983 ◽  
Vol 61 (12) ◽  
pp. 1315-1321 ◽  
Author(s):  
Peter C. Loewen ◽  
Barbara L. Triggs ◽  
Glen R. Klassen ◽  
Joel H. Weiner

A hybrid Escherichia coli: Col E1 plasmid, pLC36-19, containing a catalase gene has been identified in the Clarke and Carbon colony bank. Catalase activity was amplified two- to three-fold in the pLC36-19-containing strain relative to other hybrid-plasmid-containing strains and this activity could be induced three- or four-fold by hydrogen peroxide or ascorbic acid. The plasmid was transferred to a strain chromosomally deficient in catalase synthesis, resulting in a strain with high and inducible levels of catalase. The plasmid was also transferred to a minicell-producing strain and minicells harbouring the plasmid were found to synthesize a labelled protein with a molecular weight of 84 000 characteristic of catalase from E. coli. A catalase activity was also synthesized by the plasmid-containing minicells. Two catalase activities with associated peroxidase activities coded for by the plasmid were separable by polyacrylamide gel electrophoresis and migrated coincident with chromosomally encoded catalase–peroxidase activities. A third catalase activity which did not have an associated peroxidase activity was not coded for by the plasmid. A physical map of the 25.5-kilobase pair plasmid was constructed by restriction nuclease analysis and the relative positions of 38 restriction sites were defined.


2021 ◽  
Vol 14 (1) ◽  
pp. 85-91
Author(s):  
Momtaz A. Shahein ◽  
Amany N. Dapgh ◽  
Essam Kamel ◽  
Samah F. Ali ◽  
Eman A. Khairy ◽  
...  

Background and Aim: Camels are important livestock in Egypt on cultural and economic bases, but studies of etiological agents of camelid diseases are limited. The enteropathogen Escherichia coli is a cause of broad spectrum gastrointestinal infections among humans and animals, especially in developing countries. Severe infections can lead to death. The current study aimed to identify pathogenic E. coli strains that cause diarrhea in camel calves and characterize their virulence and drug resistance at a molecular level. Materials and Methods: Seventy fecal samples were collected from diarrheic neonatal camel calves in Giza Governorate during 2018-2019. Samples were cultured on a selective medium for E. coli, and positive colonies were confirmed biochemically, serotyped, and tested for antibiotic susceptibility. E. coli isolates were further confirmed through detection of the housekeeping gene, yaiO, and examined for the presence of virulence genes; traT and fimH and for genes responsible for antibiotic resistance, ampC, aadB, and mphA. The isolates in the important isolated serotype, E. coli O26, were examined for toxigenic genes and sequenced. Results: The bacteriological and biochemical examination identified 12 E. coli isolates from 70 fecal samples (17.1%). Serotyping of these isolates showed four types: O26, four isolates, 33.3%; O103, O111, three isolates each, 25%; and O45, two isolates, 16.7%. The isolates showed resistance to vancomycin (75%) and ampicillin (66.6%), but were highly susceptible to ciprofloxacin, norfloxacin, and tetracycline (100%). The structural gene, yaiO (115 bp), was amplified from all 12 E. coli isolates and traT and fimH genes were amplified from 10 and 8 isolates, respectively. Antibiotic resistance genes, ampC, mphA, and aadB, were harbored in 9 (75%), 8 (66.6%), and 5 (41.7%), respectively. Seven isolates (58.3%) were MDR. Real-time-polymerase chain reaction of the O26 isolates identified one isolate harboring vt1, two with vt2, and one isolate with neither gene. Sequencing of the isolates revealed similarities to E. coli O157 strains. Conclusion: Camels and other livestock suffer various diseases, including diarrhea often caused by microbial pathogens. Enteropathogenic E. coli serotypes were isolated from diarrheic neonatal camel calves. These isolates exhibited virulence and multiple drug resistance genes.


2020 ◽  
Vol 18 (3) ◽  
pp. 430-438
Author(s):  
Walid Elmonir ◽  
Etab Mohamed Abo Remela ◽  
Yasmine Alwakil

Abstract This study aimed to assess the public health risk of coliforms and Escherichia coli contamination of potable water sources in Egypt. A total of 150 water samples (100 tap and 50 well) were collected from five districts in Gharbia governorate, Egypt. High rates of coliforms contamination were recorded in 52 and 76% of examined tap and well water samples, respectively. E. coli strains were detected in 16% of the water samples (15% tap water and 18% well water; 23.7% rural and 8.1% urban). Rural water sources were 3.5 times more likely to be contaminated than urban sources (P = 0.01). Eight (33.3%) E. coli isolates were Shiga toxin-producing E. coli (STEC). Multiple drug resistance (MDR) was observed for 62.5% of the isolates. Seven (29.2%) E. coli isolates harboured at least one of the extended-spectrum beta-lactamase (ESBL) genes. The majority (87.5%) of the STEC isolates were MDRs and harboured ESBL genes. STEC isolates were significantly more likely to resist six classes of antibiotics than non-STEC isolates. This is the first report of potable water contamination with MDR-STEC in Egypt. This study highlights an alarming public health threat that necessitates preventive interventions for public and environmental safety.


2000 ◽  
Vol 68 (10) ◽  
pp. 5933-5942 ◽  
Author(s):  
Lyla J. Melkerson-Watson ◽  
Christopher K. Rode ◽  
Lixin Zhang ◽  
Betsy Foxman ◽  
Craig A. Bloch

ABSTRACT Escherichia coli J96 is a uropathogen having both broad similarities to and striking differences from nonpathogenic, laboratoryE. coli K-12. Strain J96 contains three large (>100-kb) unique genomic segments integrated on the chromosome; two are recognized as pathogenicity islands containing urovirulence genes. Additionally, the strain possesses a fourth smaller accessory segment of 28 kb and two deletions relative to strain K-12. We report an integrated physical and genetic map of the 5,120-kb J96 genome. The chromosome contains 26 NotI, 13 BlnI, and 7 I-CeuI macrorestriction sites. Macrorestriction mapping was rapidly accomplished by a novel transposon-based procedure: analysis of modified minitransposon insertions served to align the overlapping macrorestriction fragments generated by three different enzymes (each sharing a common cleavage site within the insert), thus integrating the three different digestion patterns and ordering the fragments. The resulting map, generated from a total of 54 mini-Tn10insertions, was supplemented with auxanography and Southern analysis to indicate the positions of insertionally disrupted aminosynthetic genes and cloned virulence genes, respectively. Thus, it contains not only physical, macrorestriction landmarks but also the loci for eight housekeeping genes shared with strain K-12 and eight acknowledged urovirulence genes; the latter confirmed clustering of virulence genes at the large unique accessory chromosomal segments. The 115-kb J96 plasmid was resolved by pulsed-field gel electrophoresis inNotI digests. However, because the plasmid lacks restriction sites for the enzymes BlnI and I-CeuI, it was visualized in BlnI and I-CeuI digests only of derivatives carrying plasmid inserts artificially introducing these sites. Owing to an I-SceI site on the transposon, the plasmid could also be visualized and sized from plasmid insertion mutants after digestion with this enzyme. The insertional strains generated in construction of the integrated genomic map provide useful physical and genetic markers for further characterization of the J96 genome.


2019 ◽  
Vol 366 (16) ◽  
Author(s):  
Erjie Tian ◽  
Ishfaq Muhammad ◽  
Wanjun Hu ◽  
Zhiyong Wu ◽  
Rui Li ◽  
...  

ABSTRACT Escherichia coli are important foodborne zoonotic pathogens. Apramycin is a key aminoglycoside antibiotic used by veterinarians against E. coli. This study was conducted to establish the epidemiological cut-off value (ECV) and resistant characteristics of apramycin against E. coli. In this study, 1412 clinical isolates of E. coli from chickens in China were characterized. Minimum inhibitory concentrations (MICs) of apramycin were assessed by broth microdilution method. MIC50 and MIC90 for apramycin against E. coli (0.5–256 µg/mL) were 8 and 16 µg/mL, respectively. In this study, the tentative ECV was determined to be 16 µg/mL by the statistical method and 32 µg/mL by ECOFFinder software. Besides, the percentages of aac(3)-IV positive strains ascended with the increase of MIC values of apramycin, and the gene npmA was detected in strains with higher MICs. Sixteen apramycin highly resistant strains displayed multiple drug resistance (100%) to amoxicillin, ampicillin, gentamicin, doxycycline, tetracycline, trimethoprim and florfenicol, while most of them were susceptible to amikacin and spectinomycin. In summary, the tentative ECV of apramycin against E. coli was recommended to be 16 µg/mL.


2002 ◽  
Vol 46 (2) ◽  
pp. 360-366 ◽  
Author(s):  
Mahmoud. A. Yassien ◽  
Hosam E. Ewis ◽  
Chung-Dar Lu ◽  
Ahmed T. Abdelal

ABSTRACT A genomic library from a strain of Salmonella enterica serovar Paratyphi B that exhibits multiple drug resistance (MDR) was constructed in Escherichia coli. Two of the recombinant plasmids, pNOR5 and pNOR5, conferred resistance only to fluoroquinolones in E. coli, whereas the third, pNCTR4, conferred the MDR phenotype. Sequence and subcloning analysis showed that it is the presence of RecA on the first two plasmids which confers resistance to fluoroquinolones in E. coli. A similar analysis established that the MDR phenotype conferred by pNCTR4 is due to a gene, rma (resistance to multiple antibiotics), which encodes a 13.5-kDa polypeptide. The derived sequence for Rma exhibits a high degree of similarity to those of a group of MarA-like activators that confer MDR in E. coli. A MalE-Rma fusion protein was purified to near homogeneity and was shown to interact with a DNA fragment carrying a MarA operator sequence. Furthermore, overexpression of rma in E. coli caused changes in the outer membrane protein profile that were similar to those reported for MarA. These results suggest that Rma might act as a transcriptional activator of the marA regulon.


2012 ◽  
Vol 4 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Preeti G. Dharmik ◽  
Ashok V. Gomashe ◽  
Bharat J. Wadher

Enteric diseases enter through the mouth and are usually spread by contaminated food, water or contact with contaminated vomit or feces. Enteric infection encompasses all the infections of the intestinal tract. These intestinal infections include organisms like Escherichia coli, Salmonella, Shigella, Klebsiella, Proteus etc. Out of these, E. coli are one of the common causes of enteric infection. In spite the introduction of a wide variety of antimicrobial agents against enteric diseases, life threatening infections caused by E. coli contributes to morbidity and mortality in patients. The present study was conducted to determine the antibiotic sensitivity pattern of E. coli obtained from stool samples and potentiation of antibiotic activity by citric acid against multiple drug resistant E. coli. Out of the 200 isolates of E. coli, 150 were found to be resistant to one or more antibiotics tested. 0.05% and 0.1% citric acid was found to be effective in increasing the potency of the all the antibiotics used in the study.


2005 ◽  
Vol 187 (15) ◽  
pp. 5500-5503 ◽  
Author(s):  
Robin C. Woolley ◽  
Govindsamy Vediyappan ◽  
Matthew Anderson ◽  
Melinda Lackey ◽  
Bhagavathi Ramasubramanian ◽  
...  

ABSTRACT Herein, we identify vceC as a component of a vceCAB operon, which codes for the Vibrio cholerae VceAB multiple-drug resistance (MDR) efflux pump, and vceR, which codes for a transcriptional autoregulatory protein that negatively regulates the expression of the vceCAB operon and is modulated by some of the substrates of this MDR efflux pump.


2019 ◽  
Vol 82 (1) ◽  
pp. 164-167 ◽  
Author(s):  
PATRICK KINDLE ◽  
MAGDALENA NÜESCH-INDERBINEN ◽  
NICOLE CERNELA ◽  
ROGER STEPHAN

ABSTRACT Wheat flour has recently been described as a novel vehicle for transmission of Shiga toxin–producing Escherichia coli (STEC). Very recently, an outbreak of STEC O121 and STEC O26 infections was linked to flour in the United States. The aim of the present study was to generate baseline data for the occurrence of STEC in flour samples from different retailers in Switzerland. In total, 70 flour samples were analyzed. After enrichment, the samples were screened for stx1 and stx2 by the Assurance GDS MPX ID assay. STEC strains were isolated and serotyped by the E. coli SeroGenoTyping AS-1 kit. The determination of stx subtypes was performed with conventional PCR amplification. Screening for eae, aggR, elt, and estIa/Ib was performed by real-time PCR. Nine (12.9%) of the flour samples tested positive for stx by PCR. STEC was recovered from eight (88.9%) of the positive samples. Two isolates were STEC O11:H48 harboring stx1c/stx1d, two were O146:H28 containing stx2b, one was O103:H2 containing stx1a and eae, and three were O nontypeable: Ont:H12 (stx2a), Ont:H14 (stx2a/stx2g), and Ont:H31 (stx1c/stx1d). STEC O103 belongs to the “top five” serogroups of human pathogenic STEC in the European Union, and STEC O146 is frequently isolated from diseased humans in Switzerland. Our results show that flour may be contaminated with a variety of STEC serogroups. Consumption of raw or undercooked flour may constitute a risk for STEC infection.


1984 ◽  
Vol 93 (2) ◽  
pp. 181-188 ◽  
Author(s):  
D. J. Platt ◽  
J. S. Sommerville ◽  
C. A. Kraft ◽  
M. C. Timbury

SummaryFour hundred and seven clinical isolates ofEscherichia coliwere examined for the presence of plasmids. These isolates comprised 189 which were collected irrespective of antimicrobial resistance (VP) and 218 which were collected on the basis of high-level trimethoprim resistance (TPR). The VP isolates were divided into drug sensitive (VPS) and drug-resistant (VPR) subpopulations.Plasmids were detected in 88% of VP isolates (81% of VPS and 94% of VPR) and 98% of TPR isolates. The distribution of plasmids in both groups and subpopulations was very similar. However, there were small but statistically significant differences between the plasmid distributions. These showed that more isolates in the resistant groups harboured plasmids than in the sensitive subpopulation (VPS) and that the number of plasmids carried by resistant isolates was greater. Multiple drug resistance was significantly more common among TPR isolates than the VPR subpopulation and this was paralleled by increased numbers of plasmids.Fifty-eight per cent of VPR and 57% of TPR isolates transferred antimicrobial resistance and plasmids toE. coliK12. Of the R+isolates, 60% carried small plasmids (MW < 20Md) and 52% of these co-transferred with R-plasmids. These results are discussed.


Sign in / Sign up

Export Citation Format

Share Document