scholarly journals First Report ofblaIMP-14on a Plasmid Harboring Multiple Drug Resistance Genes in Escherichia coli Sequence Type 131

2016 ◽  
Vol 60 (8) ◽  
pp. 5068-5071 ◽  
Author(s):  
Nicole Stoesser ◽  
Anna E. Sheppard ◽  
Gisele Peirano ◽  
Robert P. Sebra ◽  
Tarah Lynch ◽  
...  

ABSTRACTTheblaIMP-14carbapenem resistance gene has largely previously been observed inPseudomonas aeruginosaandAcinetobacterspp. As part of global surveillance and sequencing of carbapenem-resistantEscherichia coli, we identified a sequence type 131 strain harboringblaIMP-14within a class 1 integron, itself nested within an ∼54-kb multidrug resistance region on an epidemic IncA/C2plasmid. The emergence ofblaIMP-14in this context in the ST131 lineage is of potential clinical concern.

2011 ◽  
Vol 55 (10) ◽  
pp. 4828-4833 ◽  
Author(s):  
Farid El Garch ◽  
Pierre Bogaerts ◽  
Carine Bebrone ◽  
Moreno Galleni ◽  
Youri Glupczynski

ABSTRACTA carbapenem-resistantPseudomonas aeruginosastrain (PA41437) susceptible to expanded-spectrum cephalosporins was recovered from several consecutive lower-respiratory-tract specimens of a patient who developed a ventilator-associated pneumonia while hospitalized in an intensive care unit. Cloning experiments identified OXA-198, a new class D β-lactamase which was weakly related (less than 45% amino acid identity) to other class D β-lactamases. Expression inEscherichia coliTOP10 and inP. aeruginosaPAO1 led to transformants that were resistant to ticarcillin and showed reduced susceptibility to carbapenems and cefepime. TheblaOXA-198gene was harbored by a class 1 integron carried by a ca. 46-kb nontypeable plasmid. This study describes a novel class D β-lactamase involved in carbapenem resistance inP. aeruginosa.


2013 ◽  
Vol 57 (8) ◽  
pp. 3775-3782 ◽  
Author(s):  
Jianhui Xiong ◽  
David C. Alexander ◽  
Jennifer H. Ma ◽  
Maxime Déraspe ◽  
Donald E. Low ◽  
...  

ABSTRACTPseudomonas aeruginosa96 (PA96) was isolated during a multicenter surveillance study in Guangzhou, China, in 2000. Whole-genome sequencing of this outbreak strain facilitated analysis of its IncP-2 carbapenem-resistant plasmid, pOZ176. The plasmid had a length of 500,839 bp and an average percent G+C content of 57%. Of the 618 predicted open reading frames, 65% encode hypothetical proteins. The pOZ176 backbone is not closely related to any plasmids thus far sequenced, but some similarity to pQBR103 ofPseudomonas fluorescensSBW25 was observed. Two multiresistant class 1 integrons and several insertion sequences were identified. TheblaIMP-9-carrying integron containedaacA4→blaIMP-9→aacA4, flanked upstream by Tn21 tnpMRAand downstream by a completetnioperon of Tn402and amermodule, named Tn6016. The second integron carriedaacA4→catB8a→blaOXA-10and was flanked by Tn1403-liketnpRAand asul1-type 3′ conserved sequence (3′-CS), named Tn6217. Other features include three resistance genes similar to those of Tn5, a tellurite resistance operon, and twopiloperons. The replication and maintenance systems exhibit similarity to a genomic island ofRalstonia solanacearumGM1000. Codon usage analysis suggests the recent acquisition ofblaIMP-9. The origins of the integrons on pOZ176 indicated separate horizontal gene transfer events driven by antibiotic selection. The novel mosaic structure of pOZ176 suggests that it is derived from environmental bacteria.


2013 ◽  
Vol 57 (7) ◽  
pp. 3408-3411 ◽  
Author(s):  
Frédéric Janvier ◽  
Katy Jeannot ◽  
Sophie Tessé ◽  
Marjorie Robert-Nicoud ◽  
Hervé Delacour ◽  
...  

ABSTRACTAn NDM-1 carbapenemase-producingPseudomonas aeruginosaisolate was recovered from a patient hospitalized in France after a previous hospitalization in Serbia. Genetic studies revealed that theblaNDM-1gene was surrounded by insertion sequence ISAba125and a truncated bleomycin resistance gene. ThisblaNDM-1region was a part of the variable region of a new complex class 1 integron bearing IS common region 1 (ISCR1). The presence of ISPa7upstream of this integron suggests insertion in a chromosomally located Tn402-like structure.


2019 ◽  
Vol 11 (02) ◽  
pp. 138-143 ◽  
Author(s):  
Ronni Mol Joji ◽  
Nouf Al-Rashed ◽  
Nermin Kamal Saeed ◽  
Khalid Mubarak Bindayna

Abstract INTRODUCTION: Carbapenem-resistant Pseudomonas aeruginosa has emerged as a life-threatening infectious agent worldwide. Carbapenemase genes are reported to be some of the most common mechanisms for carbapenem resistance in P. aeruginosa. No reports are available from the Kingdom of Bahrain about carbapenem resistance and the underlying cause. In this study, we determined to study the presence of the metallo-beta-lactamase (M β L) genes of VIM family and NDM-1 in carbapenem-resistant P. aeruginosa strains. METHODOLOGY: Fifty carbapenem-resistant P. aeruginosa isolates were obtained from three main hospitals of Bahrain. They were subjected to antimicrobial susceptibility testing by disc diffusion test. Subsequently, MβL was detected by imipenem-ethylene diamine tetraacetic acid (EDTA) combined disc test and conventional polymerase chain reaction. RESULTS: Among 50 P. aeruginosa strains, 40 (80%) were imipenem resistant. Among the 40 imipenem-resistant strains, 35 (87.5%) strains were positive for the imipenem-EDTA combined disc test, and 21 (52%) were carrying MβL genes. Nineteen (47.5%) strains were positive for the VIM gene; one (2.5%) strain was carrying the NDM-1 gene, while one strain was carrying both the VIM and NDM-1 genes. None of the imipenem sensitive strains carried the VIM or NDM-1 gene. CONCLUSION: This is the first study to report the presence of the VIM family gene and NDM-1 genes in imipenem-resistant P. aeruginosa isolates in the Kingdom of Bahrain. The study also confirms the multiple drug resistance by the MβL strains, attention should therefore from now on, be focused on prevention of further spread of such isolates by firm infection control measures, and to reduce its threat to public health.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ching-Hsun Wang ◽  
L. Kristopher Siu ◽  
Feng-Yee Chang ◽  
Yu-Kuo Tsai ◽  
Yi-Tsung Lin ◽  
...  

ABSTRACT We report the first clinical Escherichia coli strain EC3000 with concomitant chromosomal colistin and carbapenem resistance. A novel in-frame deletion, Δ6-11 (RPISLR), in pmrB that contributes to colistin resistance was verified using recombinant DNA techniques. Although being less fit than the wild-type (WT) strain or EC3000 revertant (chromosomal replacement of WT pmrB in EC3000), a portion of serially passaged EC3000 strains preserving colistin resistance without selective pressure raises the concern for further spread.


2020 ◽  
Vol 8 (2) ◽  
pp. 161 ◽  
Author(s):  
Max Laurence Cummins ◽  
Mohammad Hamidian ◽  
Steven Philip Djordjevic

Salmonella genomic island 1 (SGI1) is an integrative mobilisable element that plays an important role in the capture and spread of multiple drug resistance. To date, SGI1 has been found in clinical isolates of Salmonella enterica serovars, Proteus mirabilis, Morganella morganii, Acinetobacter baumannii, Providencia stuartii, Enterobacter spp, and recently in Escherichia coli. SGI1 preferentially targets the 3´-end of trmE, a conserved gene found in the Enterobacteriaceae and among members of the Gammaproteobacteria. It is, therefore, hypothesised that SGI1 and SGI1-related elements (SGI1-REs) may have been acquired by diverse bacterial genera. Here, Bitsliced Genomic Signature Indexes (BIGSI) was used to screen the NCBI Sequence Read Archive (SRA) for putative SGI1-REs in Gammaproteobacteria. Novel SGI-REs were identified in diverse genera including Cronobacter spp, Klebsiella spp, and Vibrio spp and in two additional isolates of Escherichia coli. An extensively drug-resistant human clonal lineage of Klebsiella pneumoniae carrying an SGI1-RE in the United Kingdom and an SGI1-RE that lacks a class 1 integron were also identified. These findings provide insight into the origins of this diverse family of clinically important genomic islands and expand the knowledge of the potential host range of SGI1-REs within the Gammaproteobacteria.


2012 ◽  
Vol 56 (5) ◽  
pp. 2746-2749 ◽  
Author(s):  
Sanda Sardelic ◽  
Branka Bedenic ◽  
Céline Colinon-Dupuich ◽  
Stjepan Orhanovic ◽  
Zrinka Bosnjak ◽  
...  

ABSTRACTOne hundred sixty-nine nonreplicate imipenem-resistantPseudomonas aeruginosastrains isolated in a large hospital on the coastal region of Croatia were studied. The most active antibiotics were colistin and amikacin. Most of the isolates were multiresistant. The most prevalent serotype was O12, followed by O11. Six strains carried theblaVIM-2gene located in a novel class 1 integron composed in its variable part of theblaVIM-2-blaoxa-10-ΔqacF-aacA4genes. Metallo-β-lactamase-producing strains belonged to sequence types ST235 and ST111.


2012 ◽  
Vol 57 (1) ◽  
pp. 96-100 ◽  
Author(s):  
Tatsuya Tada ◽  
Tohru Miyoshi-Akiyama ◽  
Kayo Shimada ◽  
Masahiro Shimojima ◽  
Teruo Kirikae

ABSTRACTPseudomonas aeruginosaNCGM1588 has a novel chromosomal class 1 integron, In151, which includes theaac(6′)-Iajgene. The encoded protein, AAC(6′)-Iaj, was found to consist of 184 amino acids, with 70% identity to AAC(6′)-Ia.Escherichia colitransformed with a plasmid containing theaac(6′)-Iajgene acquired resistance to all aminoglycosides tested except gentamicin. Of note,aac(6′)-Iajcontributed to the resistance to arbekacin. Thin-layer chromatography revealed that AAC(6′)-Iaj acetylated all aminoglycosides tested except gentamicin. These findings indicated that AAC(6′)-Iaj is a functional acetyltransferase that modifies the amino groups at the 6′ positions of aminoglycosides and contributes to aminoglycoside resistance ofP. aeruginosaNCGM1588, including arbekacin.


Author(s):  
Eucharia E. Nmema ◽  
Chioma S. Osuagwu ◽  
Eunice N. Anaele

Aims: The aims of the study were to evaluate the multidrug resistance profile and mechanisms of carbapenem resistance in Pseudomonas aeruginosa clinical isolates using phenotypic and genotypic methods. Study Design: A descriptive laboratory based study. Place and Duration of Study: Microbiology Laboratory, Ondo State University of Science and Technology, Okitipupa, and Biotechnology Laboratory, Ladoke Akintola University of Technology, Osogbo, Nigeria, between June 2017 and November 2018. Methodology: Ten P. aeruginosa isolates were recovered from patients at Lagos University Teaching Hospital, and susceptibilities to imipenem (10 µg), meropenem (10 µg) and a panel of antibiotics were performed by the disk diffusion method. Genotypic methods including Polymerase Chain Reactions (PCR) and agarose gel electrophoresis were carried out according to established protocols. oprD and blaIMP gene primers were used for the PCR amplification. Results: Fifty percent (50%) of the isolates showed multiple drug resistance. Four isolates (40%) were carbapenem resistant (CR). oprD gene was detectedin 90% (9/10) of the isolates. 75% (3/4) of CR strains were among the strains showing oprD gene. 25% (1/4) CR strain (PA1421) was oprD negative. Loss or mutation of oprD gene seems to be the mechanism of carbapenem resistance in strain PA1421. Conclusion: Loss or mutation of oprD gene was identified in this study as a mechanism of carbapenem resistance. oprD gene encodes the outer membrane protein (OprD) porin in P. aeruginosa whose deficiency confers resistance to carbapenems, especially imipenem. Surveillance of the antimicrobial susceptibility patterns of P. aeruginosa is of critical importance in understanding new and emerging resistance trends, reviewing antibiotic policies and informing therapeutic options.


2011 ◽  
Vol 55 (6) ◽  
pp. 2974-2975 ◽  
Author(s):  
Juwon Kim ◽  
Seong Geun Hong ◽  
Il Kwon Bae ◽  
Ji Roung Kang ◽  
Seok Hoon Jeong ◽  
...  

ABSTRACTEscherichia coliclinical isolate BD07372 of sequence type ST131 recovered from a bed sore specimen exhibited high-level resistance to ceftazidime and cefotaxime but exhibited susceptibility to imipenem and meropenem. The isolate harbored two β-lactamase genes, theblaCTX-M-15gene carried by an ∼250-kbp plasmid carrying the FIA and FIC replicons and theblaGES-5gene carried by a class 1 integron in the chromosome.


Sign in / Sign up

Export Citation Format

Share Document