scholarly journals Germ-Free Swiss Webster Mice on a High-Fat Diet Develop Obesity, Hyperglycemia, and Dyslipidemia

2020 ◽  
Vol 8 (4) ◽  
pp. 520
Author(s):  
Isabelle E. Logan ◽  
Gerd Bobe ◽  
Cristobal L. Miranda ◽  
Stephany Vasquez-Perez ◽  
Jaewoo Choi ◽  
...  

A calorie-dense diet is a well-established risk factor for obesity and metabolic syndrome (MetS), whereas the role of the intestinal microbiota (IMB) in the development of diet-induced obesity (DIO) is not completely understood. To test the hypothesis that Swiss Webster (Tac:SW) mice can develop characteristics of DIO and MetS in the absence of the IMB, we fed conventional (CV) and germ-free (GF) male Tac:SW mice either a low-fat diet (LFD; 10% fat derived calories) or a high-fat diet (HFD; 60% fat derived calories) for 10 weeks. The HFD increased feed conversion and body weight in GF mice independent of the increase associated with the microbiota in CV mice. In contrast to CV mice, GF mice did not decrease feed intake on the HFD and possessed heavier fat pads. The HFD caused hyperglycemia, hyperinsulinemia, and impaired glucose absorption in GF mice independent of the increase associated with the microbiota in CV mice. A HFD also elevated plasma LDL-cholesterol and increased hepatic triacylglycerol, free fatty acids, and ceramides in all mice, whereas hypertriglyceridemia and increased hepatic medium and long-chain acylcarnitines were only observed in CV mice. Therefore, GF male Tac:SW mice developed several detrimental effects of obesity and MetS from a high-fat, calorie dense diet.

2017 ◽  
Author(s):  
Matthew John Dalby

This research investigated the role of the intestinal microbiota in shaping host food intake and body weight through immunomodulation, the impact of refined and unrefined diets, and though fermentable fibre induced gastrointestinal hormone secretion. Gut-derived lipopolysaccharide activating TLR4 has been proposed to contribute to obesity. To investigate this, TLR4-/- or CD14-/- mice and C57BL/6J controls were fed a high-fat or low-fat diet. Neither TLR4-/- or CD14-/- were protected against high-fat diet-induced obesity. High-fat diet increased hypothalamic expression of SerpinA3N and SOCS3 regardless of genotype; however, inflammatory gene expression was not increased. To investigate the use of chow control diets in obesity-associated microbiota changes, C57BL/6J mice were fed a chow diet, refined high-fat, or low-fat diet. Both high-fat and low-fat refined diets resulted in similar dramatic alterations in the composition of the intestinal microbiota at the phylum, family, and species level compared to chow, while only high-fat diet feeding resulted in obesity and glucose intolerance. The roles of colonic GLP-1 and PYY in mediating fermentable fibre in reducing food intake and body fat were investigated using GLP-1R-/- and PYY-/- mice fed a high-fat diet supplemented with inulin or cellulose. Inulin supplementation reduced body fat and food intake in C57BL/6J control mice while GLP-1R-/- and PYY-/- mice showed an attenuated response to dietary inulin. In summary, this research questions the role of TLR4 and LPS in diet-induced obesity. These results demonstrate the importance of the control diet used in studies of obesity in mice and indicate that many of the obesity-associated changes in the gut microbiota are due to comparing refined high-fat diets with chow diets. These results also provide evidence for an essential role for both GLP-1 and PYY in mediating the food intake and bodyweight-reducing effects of fermentable fibre.


2020 ◽  
Vol 20 ◽  
pp. 100301
Author(s):  
Amit Goyal ◽  
Ankita Sharma ◽  
Deepika Sharma ◽  
Tapan Behl ◽  
Anjoo Kamboj ◽  
...  

2008 ◽  
Vol 295 (3) ◽  
pp. H1206-H1215 ◽  
Author(s):  
Cindy X. Fang ◽  
Feng Dong ◽  
D. Paul Thomas ◽  
Heng Ma ◽  
Leilei He ◽  
...  

Cellular hypertrophy is regulated by coordinated pro- and antigrowth machineries. Foxo transcription factors initiate an atrophy-related gene program to counter hypertrophic growth. This study was designed to evaluate the role of Akt, the forkhead transcription factor Foxo3a, and atrophy genes muscle-specific RING finger (MuRF)-1 and atrogin-1 in cardiac hypertrophy and contractile dysfunction associated with high-fat diet-induced obesity. Mice were fed a low- or high-fat diet for 6 mo along with a food-restricted high-fat weight control group. Echocardiography revealed decreased fractional shortening and increased end-systolic diameter and cardiac hypertrophy in high-fat obese but not in weight control mice. Cardiomyocytes from high-fat obese but not from weight control mice displayed contractile and intracellular Ca2+ defects including depressed maximal velocity of shortening/relengthening, prolonged duration of shortening/relengthening, and reduced intracellular Ca2+ rise and clearance. Caspase activities were greater in high-fat obese but not in weight control mouse hearts. Western blot analysis revealed enhanced basal Akt and Foxo3a phosphorylation and reduced insulin-stimulated phosphorylation of Akt and Foxo3a without changes in total protein expression of Akt and Foxo3a in high-fat obese hearts. RT-PCR and immunoblotting results displayed reduced levels of the atrogens atrogin-1 and MuRF-1, the upregulated hypertrophic markers GATA4 and ciliary neurotrophic factor receptor-α, as well as the unchanged calcineurin and proteasome ubiquitin in high-fat obese mouse hearts. Transfection of H9C2 myoblast cells with dominant-negative Foxo3a adenovirus mimicked palmitic acid (0.8 mM for 24 h)-induced GATA4 upregulation without an additive effect. Dominant-negative Foxo3a-induced upregulation of pAkt and repression of phosphatase and tensin homologue were abrogated by palmitic acid. These results suggest a cardiac hypertrophic response in high-fat diet-associated obesity at least in part through inactivation of Foxo3a by the Akt pathway.


2014 ◽  
Vol 89 (3) ◽  
pp. 399-412 ◽  
Author(s):  
Krisstonia Spruiell ◽  
Dominique Z. Jones ◽  
John M. Cullen ◽  
Emmanuel M. Awumey ◽  
Frank J. Gonzalez ◽  
...  

2016 ◽  
Vol 30 (S1) ◽  
Author(s):  
Young Sun Jung ◽  
Dayong Wu ◽  
Donald Smith ◽  
Simin Nikbin Meydani ◽  
Sung Nim Han

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Aneesh Singal ◽  
Caitlin R. Coker ◽  
Sarah S. Bingaman ◽  
Amy C. Arnold ◽  
Yuval Silberman

2020 ◽  
Vol 34 (3) ◽  
Author(s):  
Rasha Abdelmawla Ghazala ◽  
Azza El Medney ◽  
Anisa Meleis ◽  
Passant Mohie El dien ◽  
Hend Samir

Sign in / Sign up

Export Citation Format

Share Document