scholarly journals Differential effect of weight loss with low-fat diet or high-fat diet restriction on inflammation in the liver and adipose tissue of mice with diet-induced obesity

2011 ◽  
Vol 219 (1) ◽  
pp. 100-108 ◽  
Author(s):  
Qun Wang ◽  
Xiaoyuan Dai Perrard ◽  
Jerry L. Perrard ◽  
Amir Mansoori ◽  
Joe L. Raya ◽  
...  
2016 ◽  
Vol 310 (11) ◽  
pp. E886-E899 ◽  
Author(s):  
Pia Kiilerich ◽  
Lene Secher Myrmel ◽  
Even Fjære ◽  
Qin Hao ◽  
Floor Hugenholtz ◽  
...  

Female C57BL/6J mice were fed a regular low-fat diet or high-fat diets combined with either high or low protein-to-sucrose ratios during their entire lifespan to examine the long-term effects on obesity development, gut microbiota, and survival. Intake of a high-fat diet with a low protein/sucrose ratio precipitated obesity and reduced survival relative to mice fed a low-fat diet. By contrast, intake of a high-fat diet with a high protein/sucrose ratio attenuated lifelong weight gain and adipose tissue expansion, and survival was not significantly altered relative to low-fat-fed mice. Our findings support the notion that reduced survival in response to high-fat/high-sucrose feeding is linked to obesity development. Digital gene expression analyses, further validated by qPCR, demonstrated that the protein/sucrose ratio modulated global gene expression over time in liver and adipose tissue, affecting pathways related to metabolism and inflammation. Analysis of fecal bacterial DNA using the Mouse Intestinal Tract Chip revealed significant changes in the composition of the gut microbiota in relation to host age and dietary fat content, but not the protein/sucrose ratio. Accordingly, dietary fat rather than the protein/sucrose ratio or adiposity is a major driver shaping the gut microbiota, whereas the effect of a high-fat diet on survival is dependent on the protein/sucrose ratio.


2016 ◽  
Vol 30 (S1) ◽  
Author(s):  
Young Sun Jung ◽  
Dayong Wu ◽  
Donald Smith ◽  
Simin Nikbin Meydani ◽  
Sung Nim Han

Author(s):  
Jennifer L Ather ◽  
Katherine E Van Der Vliet ◽  
Madeleine M Mank ◽  
Leah F Reed ◽  
Anne E Dixon ◽  
...  

Although recognized as an important endocrine organ, little is known about the mechanisms through which adipose tissue can regulate inflammatory responses in distant tissues, such as lung, that are affected by obesity. To explore potential mechanisms, male C57BL/6J mice were provided either high-fat diet, low-fat diet, or were provided a high-fat diet then switched to the low-fat diet to promote weight loss. Visceral adipocytes were then cultured in vitro to generate conditioned media (CM) that was used to treat both primary (MTEC) and immortalized (MTCC) airway epithelial cells. Adiponectin levels were greatly depressed in the CM from both obese and diet-switched adipocytes relative to mice continually fed the low-fat diet. MTEC from obese mice secreted higher baseline levels of inflammatory cytokines than MTEC from lean or diet-switched mice. MTEC treated with obese adipocyte CM increased their secretion of these cytokines compared to MTEC treated with lean CM. Diet-switched CM modestly decreased the production of cytokines compared to obese CM, and these effects were recapitulated when the CM was used to treat MTCC. Adipose stromal vascular cells from obese mice expressed genes consistent with an M1 macrophage phenotype and decreased eosinophil abundance compared to lean SVF, a profile that persisted in the lean diet-switched mice despite substantial weight loss. Soluble factors secreted from obese adipocytes exert a pro-inflammatory effect on airway epithelial cells, and these alterations are attenuated by diet-induced weight loss, which could have implications for the airway dysfunction related to obese asthma and its mitigation by weight loss.


2020 ◽  
Author(s):  
Youngmin Han ◽  
Jong Ho Lee ◽  
Minjoo Kim

Abstract Background and Aims: The current nutritional intervention study was designed to determine the effect of legume on body weight in obese subjects. Methods Randomized controlled study of 12 weeks with 383 participants (body mass index ≥ 25 kg/m2) was enrolled for the study. The intervention program consisted of replacing 1/3 refined rice intake with legumes three times per day as a carbohydrate source in high fat diet group. In contrast, low fat diet group was recommended to eat as their usual diet. Results In high fat diet group, intake of energy and carbohydrate were lower, while the intake of fat and protein were higher. Mean weight loss at 12 weeks was 2.87 ± 0.21 kg and 0.17 ± 0.11 kg in the high fat diet group and low fat diet group, respectively, and was significantly different between groups (P < 0.001). HDL-cholesterol and adiponectin were increased, while glucose, insulin, triglyceride, HOMA-IR index, and 8-epi-PGF2α were decreased at 12 weeks in the high fat diet group compared with baseline. Conclusions The conclusion is that the consumption of legumes may accelerate weight loss accompanied by regulation of adiponectin and 8-epi-PGF2α in obese subjects. Also, increases in plasma adiponectin induced by a larger amount of weight loss may relate to greater activation of insulin resistance. Trial registrations: NCT04392882 (Registered 19 May 2020 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04392882?cond=NCT04392882&draw=2&rank=1)


2017 ◽  
Author(s):  
Matthew John Dalby

This research investigated the role of the intestinal microbiota in shaping host food intake and body weight through immunomodulation, the impact of refined and unrefined diets, and though fermentable fibre induced gastrointestinal hormone secretion. Gut-derived lipopolysaccharide activating TLR4 has been proposed to contribute to obesity. To investigate this, TLR4-/- or CD14-/- mice and C57BL/6J controls were fed a high-fat or low-fat diet. Neither TLR4-/- or CD14-/- were protected against high-fat diet-induced obesity. High-fat diet increased hypothalamic expression of SerpinA3N and SOCS3 regardless of genotype; however, inflammatory gene expression was not increased. To investigate the use of chow control diets in obesity-associated microbiota changes, C57BL/6J mice were fed a chow diet, refined high-fat, or low-fat diet. Both high-fat and low-fat refined diets resulted in similar dramatic alterations in the composition of the intestinal microbiota at the phylum, family, and species level compared to chow, while only high-fat diet feeding resulted in obesity and glucose intolerance. The roles of colonic GLP-1 and PYY in mediating fermentable fibre in reducing food intake and body fat were investigated using GLP-1R-/- and PYY-/- mice fed a high-fat diet supplemented with inulin or cellulose. Inulin supplementation reduced body fat and food intake in C57BL/6J control mice while GLP-1R-/- and PYY-/- mice showed an attenuated response to dietary inulin. In summary, this research questions the role of TLR4 and LPS in diet-induced obesity. These results demonstrate the importance of the control diet used in studies of obesity in mice and indicate that many of the obesity-associated changes in the gut microbiota are due to comparing refined high-fat diets with chow diets. These results also provide evidence for an essential role for both GLP-1 and PYY in mediating the food intake and bodyweight-reducing effects of fermentable fibre.


2021 ◽  
Author(s):  
Xiao Guo ◽  
Xuedan Cao ◽  
Xiugui Fang ◽  
Ailing Guo ◽  
Erhu Li

In this study, Ougan juice (OJ) and lactic acid bacteria fermented Ougan juice (FOJ) were investigated individually for their capability of preventing obesity in high-fat diet (HFD)-fed C57BL/6J mice. After...


2021 ◽  
pp. 1-24
Author(s):  
L. Irasema Chávaro-Ortiz ◽  
Brenda D. Tapia-Vargas ◽  
Mariel Rico-Hidalgo ◽  
Ruth Gutiérrez-Aguilar ◽  
María E. Frigolet

Abstract Obesity is defined as increased adiposity, which leads to metabolic disease. The growth of adipose tissue depends on its capacity to expand, through hyperplasia or hypertrophy, in order to buffer energy surplus. Also, during the establishment of obesity, adipose tissue expansion reflects adipose lipid metabolism (lipogenesis and/or lipolysis). It is well known that dietary factors can modify lipid metabolism promoting or preventing the development of metabolic abnormalities that concur with obesity. Trans-palmitoleic acid (TP), a biomarker of dairy consumption, has been associated with reduced adiposity in clinical studies. Thus, we aimed to evaluate the effect of TP over adiposity and lipid metabolism-related genes in a rodent model of diet-induced obesity (DIO). To fulfil this aim, we fed C57BL/6 mice with a Control or a High Fat diet, added with or without TP (3g/kg diet), during 11 weeks. Body weight and food intake were monitored, fat pads were weighted, histology of visceral adipose tissue was analysed, and lipid metabolism-related gene expression was explored by qPCR. Results show that TP consumption prevented weight gain induced by high fat diet, reduced visceral adipose tissue weight, and adipocyte size, while increasing the expression of lipolytic molecules. In conclusion, we show for the first time that TP influences adipose tissue metabolism, specifically lipolysis, resulting in decreased adiposity and reduced adipocyte size in a DIO mice model.


Sign in / Sign up

Export Citation Format

Share Document