scholarly journals Characterization of the Phenanthrene-Degrading Sphingobium yanoikuyae SJTF8 in Heavy Metal Co-Existing Liquid Medium and Analysis of Its Metabolic Pathway

2020 ◽  
Vol 8 (6) ◽  
pp. 946 ◽  
Author(s):  
Chong Yin ◽  
Weiliang Xiong ◽  
Hua Qiu ◽  
Wanli Peng ◽  
Zixin Deng ◽  
...  

Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants with great carcinogenic threaten, and metal/PAH-contaminated environments represent one of the most difficult remedial challenges. In this work, Sphingobium yanoikuyae SJTF8 was isolated and identified with great and stable PAH-degrading efficiency even under stress conditions. It could utilize typical PAHs (naphthalene, phenanthrene, and anthracene) and heterocyclic and halogenated aromatic compounds (dibenzothiophene and 9-bromophenanthrene) as the sole carbon source. It could degrade over 98% of 500 mg/L phenanthrene in 4 days, and the cis-3,4-dihydrophenanthrene-3,4-diol was the first-step intermediate. Notably, strain SJTF8 showed great tolerance to heavy metals and acidic pH. Supplements of 0.30 mM of Cu2+, 1.15 mM of Zn2+, and 0.01 mM of Cd2+ had little effect on its cell growth and phenanthrene degradation; phenanthrene of 250 mg/L could still be degraded completely in 48 h. Further, the whole genome sequence of S. yanoikuyae SJTF8 was obtained, and three plasmids were found. The potential genes participating in stress-tolerance and PAH-degradation were annotated and were found mostly distributed in plasmids 1 and 2. Elimination of plasmid 2 resulted in the loss of the PAH-degradation ability. On the basis of genome mining results, the possible degrading pathway and the metabolites of S. yanoikuyae SJTF8 to phenanthrene were predicted.

2018 ◽  
Vol 28 (4) ◽  
pp. 183-189 ◽  
Author(s):  
Tao Peng ◽  
An Luo ◽  
Jie Kan ◽  
Lei Liang ◽  
Tongwang Huang ◽  
...  

Nowadays, contamination of soil and marine sediments by polycyclic aromatic hydrocarbons (PAHs) has become a serious problem all over the world. <i>Rhodococcus</i> sp. P14 was isolated from sediments with crude oil contaminate and showed degradation ability on various PAHs. The genome of <i>Rhodococcus</i> sp. P14 was sequenced. A gene cluster encoding a ring-hydroxylating dioxygenase Baa related to PAH degradation was identified by bioinformatics. The expression level of gene <i>baaA</i> was increased when P14 was cultured with anthracene, pyrene, phenanthrene, or benz[a]­anthracene as the single carbon source. The recombinant protein Baa was overexpressed in <i>E. coli</i> BL21 (DE3). Further investigations on the recombinant protein Baa in <i>E. coli</i> demonstrated that it was able to oxidize anthracene and benz [a]anthracene, resulting in 9,10-dihydroxyanthracene and 7, 12-dihydroxybenz[a]anthracene as metabolites, respectively. These results indicate that Baa plays an important role in PAH degradation in <i>Rhodococcus</i> sp. P14 and Baa has potential application in the bioremediation of PAHs in the contaminated environment.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yang Li ◽  
Wenjing Li ◽  
Lei Ji ◽  
Fanyong Song ◽  
Tianyuan Li ◽  
...  

The biodegradation of organic pollutants is the main pathway for the natural dissipation and anthropogenic remediation of polycyclic aromatic hydrocarbons (PAHs) in the environment. However, in the saline soils, the PAH biodegradation could be influenced by soil salts through altering the structures of microbial communities and physiological metabolism of degradation bacteria. In the worldwide, soils from oilfields are commonly threated by both soil salinity and PAH contamination, while the influence mechanism of soil salinity on PAH biodegradation were still unclear, especially the shifts of degradation genes and soil enzyme activities. In order to explain the responses of soils and bacterial communities, analysis was conducted including soil properties, structures of bacterial community, PAH degradation genes and soil enzyme activities during a biodegradation process of PAHs in oilfield soils. The results showed that, though low soil salinity (1% NaCl, w/w) could slightly increase PAH degradation rate, the biodegradation in high salt condition (3% NaCl, w/w) were restrained significantly. The higher the soil salinity, the lower the bacterial community diversity, copy number of degradation gene and soil enzyme activity, which could be the reason for reductions of degradation rates in saline soils. Analysis of bacterial community structure showed that, the additions of NaCl increase the abundance of salt-tolerant and halophilic genera, especially in high salt treatments where the halophilic genera dominant, such as Acinetobacter and Halomonas. Picrust2 and redundancy analysis (RDA) both revealed suppression of PAH degradation genes by soil salts, which meant the decrease of degradation microbes and should be the primary cause of reduction of PAH removal. The soil enzyme activities could be indicators for microorganisms when they are facing adverse environmental conditions.


2021 ◽  
Vol 19 (3) ◽  
pp. 246-254
Author(s):  
Nur Zaida Zahari ◽  
◽  
Erma Hani Baharudzaman ◽  
Piakong Mohd Tuah ◽  
Fera Nony Cleophas ◽  
...  

Oil spills are one of the environmental pollutions that commonly occur along coastal areas. Tar-balls are one of the products that come from the oil spill pollution. In this study, tar-ball pollution was monitored at 10 points along the coastline of Marintaman Beach in Sipitang, Sabah, Malaysia. This research determined the physical characteristics, composition, and concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in tar-balls. The total number of tar-balls collected was 227 (n=227). The tar-balls were observed in various shapes and the sizes were recorded in the range of 0.1 cm to 6.9 cm. The composition and concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in the outer and inner layer of tar-balls were determined. The results showed that the main Polycyclic Aromatic Hydrocarbons (PAHs) compounds were found in inner layers of the tar-balls with benzo (g,h,i) perylene (72.26 mg/kg), flourene (59.87 mg/kg), dibenzo (a,h) anthracene (44.48 mg/kg), indeno (1,2,3-c,d) pyrene (78.18 mg/kg), and benzo (e) fluoranthene (45.70 mg/kg), respectively. Further research was done with the bioaugmentation study of locally isolated beneficial microorganisms (LIBeM) consortium for treatment of tar-balls in an Aerated Static Pile (ASP) bioreactor system. The results showed that, after 84 days of treatment, this consortium, consisting of C. tropicalis-RETL-Cr1, C. violaceum-MAB-Cr1, and P. aeruginosa-BAS-Cr1, was able to degrade total petroleum hydrocarbon (TPH) by 84% as compared to natural attenuation (19%). The microbial population of this consortium during the biodegradation study is also discussed in this paper.


Jurnal Kimia ◽  
2020 ◽  
pp. 94
Author(s):  
R. Novianty ◽  
B. Antika ◽  
. Saryono ◽  
A. Awaluddin ◽  
N. W. Pratiwi

Naphthalene is a group of Polycyclic Aromatic Hydrocarbons (PAHs) which is carcinogenic when presents in the environment. The purpose of this study was to determine the growth response and test the effectiveness of three isolates of indigen bacteria from the Joint Operation Agency area of ??PT. Siak Bumi Pusako-Pertamina Hulu (BOB BSP-PHE) in degrading naphthalene. The three isolates were tested in a Minimum Media (MM) liquid containing naphthalene with a final concentration of 0.2 mM and was incubated for 7 days. Optical Density (OD) and the degradation ability were analyzed using a UV-Vis spectrophotometer. The results showed that Pseudomonas sp. LBKURCC149 was able to grow in media containing naphthalene. Naphthalene is used as the only source of carbon and is able to degrade naphthalene by 21.98%.   Keywords: biodegradation, indigenous, naphthalene, Pseudomonas sp.


1998 ◽  
Vol 64 (1) ◽  
pp. 359-362 ◽  
Author(s):  
Matthias Kästner ◽  
Maren Breuer-Jammali ◽  
Bernd Mahro

ABSTRACT Degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of bacteria in soil was investigated by applying different inoculation protocols. The soil was inoculated with Sphingomonas paucimobilis BA 2 and strain BP 9, which are able to degrade anthracene and pyrene, respectively. CFU of soil bacteria and of the introduced bacteria were monitored in native and sterilized soil at different pHs. Introduction with mineral medium inhibited PAH degradation by the autochthonous microflora and by the strains tested. After introduction with water (without increase of the pore water salinity), no inhibition of the autochthonous microflora was observed and both strains exhibited PAH degradation.


Sign in / Sign up

Export Citation Format

Share Document