scholarly journals Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla Hemoglobin

2021 ◽  
Vol 9 (7) ◽  
pp. 1455
Author(s):  
Fei Yu ◽  
Xinrui Zhao ◽  
Ziwei Wang ◽  
Luyao Liu ◽  
Lingfeng Yi ◽  
...  

Vitreoscilla hemoglobin (VHb), the first discovered bacterial hemoglobin, is a soluble heme-binding protein with a faster rate of oxygen dissociation. Since it can enhance cell growth, product synthesis and stress tolerance, VHb has been widely applied in the field of metabolic engineering for microorganisms, plants, and animals. Especially under oxygen-limited conditions, VHb can interact with terminal oxidase to deliver enough oxygen to achieve high-cell-density fermentation. In recent years, with the development of bioinformatics and synthetic biology, several novel physicochemical properties and metabolic regulatory effects of VHb have been discovered and numerous strategies have been utilized to enhance the expression level of VHb in various hosts, which greatly promotes its applications in biotechnology. Thus, in this review, the new information regarding structure, function and expressional tactics for VHb is summarized to understand its latest applications and pave a new way for the future improvement of biosynthesis for other products.

2005 ◽  
Vol 187 (16) ◽  
pp. 5658-5664 ◽  
Author(s):  
Elizabeth E. Wyckoff ◽  
Gregory F. Lopreato ◽  
Kimberly A. Tipton ◽  
Shelley M. Payne

ABSTRACT Shigella dysenteriae serotype 1, a major cause of bacillary dysentery in humans, can use heme as a source of iron. Genes for the transport of heme into the bacterial cell have been identified, but little is known about proteins that control the fate of the heme molecule after it has entered the cell. The shuS gene is located within the heme transport locus, downstream of the heme receptor gene shuA. ShuS is a heme binding protein, but its role in heme utilization is poorly understood. In this work, we report the construction of a chromosomal shuS mutant. The shuS mutant was defective in utilizing heme as an iron source. At low heme concentrations, the shuS mutant grew slowly and its growth was stimulated by either increasing the heme concentration or by providing extra copies of the heme receptor shuA on a plasmid. At intermediate heme concentrations, the growth of the shuS mutant was moderately impaired, and at high heme concentrations, shuS was required for growth on heme. The shuS mutant did not show increased sensitivity to hydrogen peroxide, even at high heme concentrations. ShuS was also required for optimal utilization of heme under microaerobic and anaerobic conditions. These data are consistent with the model in which ShuS binds heme in a soluble, nontoxic form and potentially transfers the heme from the transport proteins in the membrane to either heme-containing or heme-degrading proteins. ShuS did not appear to store heme for future use.


Planta Medica ◽  
2021 ◽  
Author(s):  
Jerald Nair ◽  
Johannes Van Staden

The Amaryllidaceae features prominently amongst bulbous flowering plant families. Accommodating about a third of its species, South Africa affords a sound basis for Amaryllidaceae plant research. Boophone, Nerine, Crossyne, Clivia, Cryptostephanus, Haemanthus and Scadoxus have been well-represented in such endeavors. The account herein summarizes the studies undertaken between 2013-2020 on these genera in regards to their chemical and biological characteristics. A total of 136 compounds comprising 63 alkaloids and 73 non-alkaloid entities were described during this period from eighteen members of the title genera. The alkaloids were reflective of the structural diversity found in eight isoquinoline alkaloid groups of the Amaryllidaceae. Of these, the crinane (29 compounds), lycorane and homolycorine (11 compounds each) groups were the most-represented. The non-alkaloid substances were embracive of the same number of unrelated groups including, acids, phenolics, flavonoids and triterpenoids. A wide variety of assays were engaged to ascertain the biological activities of the isolated compounds, notably in regards to cancer and motorneuron-related diseases. There were also attempts made to determine the antimicrobial, anti-inflammatory and antioxidant effects of some of the substances. New information has also emerged on the herbicidal, insecticidal and plant growth regulatory effects of selected alkaloid principles. Coupled to the biological screening measures were in instances probes made to establish the molecular basis to some of the activities, particularly in relation to cancer and Parkinsonʹs disease.


2016 ◽  
Vol 82 (6) ◽  
pp. 279-290 ◽  
Author(s):  
Antonio Emidio Fortunato ◽  
Paolo Sordino ◽  
Nikos Andreakis

Biochemistry ◽  
2008 ◽  
Vol 47 (50) ◽  
pp. 13252-13260 ◽  
Author(s):  
Eve de Rosny ◽  
Arjan de Groot ◽  
Celine Jullian-Binard ◽  
Franck Borel ◽  
Cristian Suarez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document