scholarly journals Selection and Amplification of Fungicide Resistance in Aspergillus fumigatus in Relation to DMI Fungicide Use in Agronomic Settings: Hotspots versus Coldspots

2021 ◽  
Vol 9 (12) ◽  
pp. 2439
Author(s):  
Kevin J. Doughty ◽  
Helge Sierotzki ◽  
Martin Semar ◽  
Andreas Goertz

Aspergillus fumigatus is a ubiquitous saprophytic fungus. Inhalation of A. fumigatus spores can lead to Invasive Aspergillosis (IA) in people with weakened immune systems. The use of triazole antifungals with the demethylation inhibitor (DMI) mode of action to treat IA is being hampered by the spread of DMI-resistant “ARAf” (azole-resistant Aspergillus fumigatus) genotypes. DMIs are also used in the environment, for example, as fungicides to protect yield and quality in agronomic settings, which may lead to exposure of A. fumigatus to DMI residues. An agronomic setting can be a “hotspot” for ARAf if it provides a suitable substrate and favourable conditions for the growth of A. fumigatus in the presence of DMI fungicides at concentrations capable of selecting ARAf genotypes at the expense of the susceptible wild-type, followed by the release of predominantly resistant spores. Agronomic settings that do not provide these conditions are considered “coldspots". Identifying and mitigating hotspots will be key to securing the agronomic use of DMIs without compromising their use in medicine. We provide a review of studies of the prevalence of ARAf in various agronomic settings and discuss the mitigation options for confirmed hotspots, particularly those relating to the management of crop waste.

2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Seyedmojtaba Seyedmousavi ◽  
Johan W. Mouton ◽  
Willem J. G. Melchers ◽  
Paul E. Verweij

ABSTRACT Using an immunocompetent murine model of invasive aspergillosis (IA), we previously reported that the efficacy of liposomal amphotericin B (L-AmB) (Ambisome) is not hampered by the presence of azole resistance mutations in Aspergillus fumigatus (S. Seyedmousavi, W. J. G. Melchers, J. W. Mouton, and P. E. Verweij, Antimicrob Agents Chemother 57:1866–1871, 2013, https://doi.org/10.1128/AAC.02226-12 ). We here investigated the role of immune suppression, i.e., neutropenia and steroid treatment, in L-AmB efficacy in mice infected with wild-type (WT) A. fumigatus and with azole-resistant A. fumigatus harboring a TR34/L98H mutation in the cyp-51A gene. Survival of treated animals at day 14 in both immunosuppressed models was significantly better than that of nontreated controls. A dose-response relationship was observed that was independent of the azole-resistant mechanism and the immunosuppression method used. In the neutropenic model, 100% survival was reached at an L-AmB dose of 16 mg/kg of body weight for the WT strain and the TR34/L98H isolate. In the steroid-treated group, 90.9% survival and 100% survival were achieved for the WT isolate and the TR34/L98H isolate with an L-AmB dose of 16 mg/kg, respectively. The 50% effective dose (ED50) was 1.40 mg/kg (95% confidence interval [CI], 0.66 to 3.00 mg/kg) for the WT isolate and 1.92 mg/kg (95% CI, 0.60 to 6.17 mg/kg) for the TR34/L98H isolate in the neutropenic model and was 2.40 mg/kg (95% CI, 1.93 to 2.97 mg/kg) for the WT isolate and 2.56 mg/kg (95% CI, 1.43 to 4.56 mg/kg) for the TR34/L98H isolate in the steroid-treated group. Overall, there were no significant differences between the two different immunosuppressed conditions in the efficacy of L-AmB against the wild-type and azole-resistant isolates (P > 0.9). However, the required L-AmB exposure was significantly higher than that seen in the immunocompetent model.


2005 ◽  
Vol 71 (3) ◽  
pp. 1531-1538 ◽  
Author(s):  
A. Beauvais ◽  
D. Maubon ◽  
S. Park ◽  
W. Morelle ◽  
M. Tanguy ◽  
...  

ABSTRACT α(1-3) glucan is a main component of the Aspergillus fumigatus cell wall. In spite of its importance, synthesis of this amorphous polymer has not been investigated to date. Two genes in A. fumigatus, AGS1 and AGS2, are highly homologous to the AGS genes of Schizosaccharomyces pombe, which encode putative α(1-3) glucan synthases. The predicted Ags proteins of A. fumigatus have an estimated molecular mass of 270 kDa. AGS1 and AGS2 were disrupted in A. fumigatus. Both Δags mutants have similar altered hyphal morphologies and reduced conidiation levels. Only Δags1 presented a reduction in the α(1-3) glucan content of the cell wall. These results showed that Ags1p and Ags2p were functionally different. The cellular localization of the two proteins was in agreement with their different functions: Ags1p was localized at the periphery of the cell in connection with the cell wall, whereas Ags2p was intracellularly located. An original experimental model of invasive aspergillosis based on mixed infection and quantitative PCR was developed to analyze the virulence of A. fumigatus mutant and wild-type strains. Using this model, it was shown that the cell wall and morphogenesis defects of Δags1 and Δags2 were not associated with a reduction in virulence in either mutant. This result showed that a 50% reduction in the content of the cell wall α(1-3) glucan does not play a significant role in A. fumigatus pathogenicity.


2006 ◽  
Vol 72 (4) ◽  
pp. 2581-2585 ◽  
Author(s):  
Zhonghua Ma ◽  
Tyre J. Proffer ◽  
Janette L. Jacobs ◽  
George W. Sundin

ABSTRACT Sterol demethylation inhibitor (DMI) fungicides are widely used to control fungi pathogenic to humans and plants. Resistance to DMIs is mediated either through alterations in the structure of the target enzyme CYP51 (encoding 14α-demethylase), through increased expression of the CYP51 gene, or through increased expression of efflux pumps. We found that CYP51 expression in DMI-resistant (DMIR) isolates of the cherry leaf spot pathogen Blumeriella jaapii was increased 5- to 12-fold compared to that in DMI-sensitive (DMIS) isolates. Analysis of sequences upstream of CYP51 in 59 DMIR isolates revealed that various forms of a truncated non-long terminal direct repeat long interspersed nuclear element retrotransposon were present in all instances. Similar inserts upstream of CYP51 were not present in any of 22 DMIS isolates examined.


2005 ◽  
Vol 73 (11) ◽  
pp. 7198-7207 ◽  
Author(s):  
Kristin J. Carpenter ◽  
Cory M. Hogaboam

ABSTRACT Aspergillus fumigatus-sensitized CCR4-deficient (CCR4−/−) mice exhibit an accelerated clearance of conidia during fungal asthma. In the present study, we examined the roles of CCL17 and CCL22, two CCR4 ligands, during pulmonary invasive aspergillosis in neutropenic mice. Kaplan-Meier survival curve analysis revealed that wild-type C57BL/6 (CCR4+/+) mice were significantly protected from the lethal effects of Aspergillus compared with their wild-type controls following systemic neutralization with anti-CCL17 but not anti-CCL22 antibodies. Systemic neutralization of CCL17 significantly increased whole-lung CCL2 levels. Mouse survival and histological analysis revealed that the receptor mediating the deleterious effects of CCL17 was CCR4 since mice genetically deficit in CCR4 (CCR4−/−) did not develop invasive aspergillosis. Enzyme-linked immunosorbent assay analysis of whole-lung samples at day 2 after conidial challenge in neutrophil-depleted CCR4−/− and CCR4+/+ mice revealed that whole-lung IL-12 levels were significantly increased in the CCR4−/− group compared with the wild-type group. Also at day 2 after conidial challenge, significantly greater numbers of CD11c+ F4/80+ and CD11c+/CD86+ but fewer CD3/NK1.1+ cells were present in the lungs of CCR4−/− mice compared with their wild-type counterparts. Thus, CCL17-CCR4 interactions dramatically impair the pulmonary antifungal response against A. fumigatus in neutropenic mice.


2012 ◽  
Vol 56 (7) ◽  
pp. 3905-3910 ◽  
Author(s):  
Birgit Spiess ◽  
Wolfgang Seifarth ◽  
Natalia Merker ◽  
Susan J. Howard ◽  
Mark Reinwald ◽  
...  

ABSTRACTThe increasing incidence of azole resistance inAspergillus fumigatuscausing invasive aspergillosis (IA) in immunocompromised/hematological patients emphasizes the need to improve the detection of resistance-mediatingcyp51Agene mutations from primary clinical samples, particularly as the diagnosis of invasive aspergillosis is rarely based on a positive culture yield in this group of patients. We generated primers from the unique sequence of theAspergillus fumigatus cyp51Agene to establish PCR assays with consecutive DNA sequence analysis to detect and identify theA. fumigatus cyp51Atandem repeat (TR) mutation in the promoter region and the L98H and M220 alterations directly in clinical samples. After testing of the sensitivity and specificity of the assays using serially dilutedA. fumigatusand human DNA,A. fumigatus cyp51Agene fragments of about 150 bp potentially carrying the mutations were amplified directly from primary clinical samples and subsequently DNA sequenced. The determined sensitivities of the PCR assays were 600 fg, 6 pg, and 4 pg ofA. fumigatusDNA for the TR, L98H, and M220 mutations, respectively. There was no cross-reactivity with human genomic DNA detectable. Sequencing of the PCR amplicons forA. fumigatuswild-type DNA confirmed thecyp51Awild-type sequence, and PCR products from one azole-resistantA. fumigatusisolate showed the L98H and TR mutations. The second azole-resistant isolate revealed an M220T alteration. We consider our assay to be of high epidemiological and clinical relevance to detect azole resistance and to optimize antifungal therapy in patients with IA.


1997 ◽  
Vol 41 (6) ◽  
pp. 1364-1368 ◽  
Author(s):  
D W Denning ◽  
K Venkateswarlu ◽  
K L Oakley ◽  
M J Anderson ◽  
N J Manning ◽  
...  

Invasive aspergillosis is an increasingly frequent opportunistic infection in immunocompromised patients. Only two agents, amphotericin B and itraconazole, are licensed for therapy. Itraconazole acts through inhibition of a P-450 enzyme undertaking sterol 14alpha demethylation. In vitro resistance in Aspergillus fumigatus to itraconazole correlated with in vivo outcome has not been previously described. For three isolates (AF72, AF90, and AF91) of A. fumigatus from two patients with invasive aspergillosis itraconazole MICs were elevated. A neutropenic murine model was used to establish the validity of the MICs. The isolates were typed by random amplification of polymorphic DNA. Analysis of sterols, inhibition of cell-free sterol biosynthesis from [14C] mevalonate, quantitation of P-450 content, and [3H]itraconazole concentration in mycelial pellets were used to determine the mechanisms of resistance. The MICs for the three resistant isolates were >16 microg/ml. In vitro resistance was confirmed in vivo for all three isolates. Molecular typing showed the isolates from the two patients to be genetically distinct. Compared to the susceptible isolate from patient 1, AF72 had a reduced ergosterol content, greater quantities of sterol intermediates, a similar susceptibility to itraconazole in cell-free ergosterol biosynthesis, and a reduced intracellular [3H]itraconazole concentration. In contrast, AF91 and AF92 had slightly higher ergosterol and lower intermediate sterol concentrations, fivefold increased resistance in cell-free systems to the effect of itraconazole on sterol 14alpha demethylation, and intracellular [3H] itraconazole concentrations found in susceptible isolates. Resistance to itraconazole in A. fumigatus is detectable in vitro and is present in wild-type isolates, and at least two mechanisms of resistance are responsible.


2014 ◽  
Vol 59 (3) ◽  
pp. 1487-1494 ◽  
Author(s):  
Seyedmojtaba Seyedmousavi ◽  
Johan W. Mouton ◽  
Willem J. G. Melchers ◽  
Paul E. Verweij

ABSTRACTWe investigated the efficacy of posaconazole prophylaxis in preventing invasive aspergillosis due to azole-resistantAspergillus fumigatusisolates. Using a neutropenic murine model of pulmonary infection, posaconazole prophylaxis was evaluated using three isogenic clinical isolates, with posaconazole MICs of 0.063 mg/liter (wild type), 0.5 mg/liter (F219I mutation), and 16 mg/liter. A fourth isolate harboring TR34/L98H (MIC of 0.5 mg/liter) was also tested. Posaconazole prophylaxis was effective inA. fumigatuswith posaconazole MICs of ≤0.5 mg/liter, where 100% survival was reached. However, breakthrough infection was observed in mice infected with the isolate for which the posaconazole MIC was >16 mg/liter.


2016 ◽  
Vol 69 ◽  
pp. 1-10 ◽  
Author(s):  
R.M. Beresford ◽  
P.J. Wright ◽  
P.N. Wood ◽  
R.H. Agnew

Isolates of Erysiphe necator from Hawkes Bay and Marlborough vineyards were tested for sensitivity to three demethylation inhibitor (DMI) fungicides (myclobutanil penconazole and cyproconazole) and one quinone outside inhibitor (QoI) fungicide (trifloxystrobin) Mean colony diameter was determined in a detached grape leaf assay for approximately 20 isolates per vineyard at 1 and 10 mg/litre of each fungicide Resistance to trifloxystrobin was prevalent in Hawkes Bay and Marlborough Mycobutanil resistance was found in both regions but particularly in Marlborough There was some loss of sensitivity to penconazole particularly in Marlborough Cyproconazole showed greater efficacy against E necator than the other two DMIs tested There was no explanation for the high trifloxystrobin resistance in sampled vineyards with few reports of trifloxystrobin use For DMIs there was a strong relationship between number of DMI fungicide applications over 10 years and DMI resistance across all three DMI active ingredients in both regions


Author(s):  
Shareef K. Shaheen ◽  
Praveen R. Juvvadi ◽  
John Allen IV ◽  
E. Keats Shwab ◽  
D. Christopher Cole ◽  
...  

Invasive aspergillosis (IA) due to Aspergillus fumigatus is a deadly infection for which new antifungal therapies are needed. Here we demonstrate the efficacy of a Gwt1 inhibitor, APX2041, and its prodrug, APX2104, against A. fumigatus . The wild-type, azole-resistant and echinocandin-resistant A. fumigatus strains were equally susceptible to APX2041 in vitro . APX2104 treatment in vivo significantly prolonged survival of neutropenic mice challenged with the wild-type and azole-resistant strains, revealing APX2104 as a potentially promising therapeutic against IA.


Sign in / Sign up

Export Citation Format

Share Document