scholarly journals Mineralogy and Fluid Regime of Formation of the REE-Late-Stage Hydrothermal Mineralization of Petyayan-Vara Carbonatites (Vuoriyarvi, Kola Region, NW Russia)

Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 405 ◽  
Author(s):  
Ilya Prokopyev ◽  
Evgeniy Kozlov ◽  
Ekaterina Fomina ◽  
Anna Doroshkevich ◽  
Maxim Dyomkin

The Vuoriyarvi Devonian alkaline–ultramafic complex (northwest Russia) contains magnesiocarbonatites with rare earth mineralization localized in the Petyayan-Vara area. High concentrations of rare earth elements are found in two types of these rocks: (a) ancylite-dominant magnesiocarbonatites with ancylite–baryte–strontianite–calcite–quartz (±late Ca–Fe–Mg carbonates) ore assemblage, i.e., “ancylite ores”; (b) breccias of magnesiocarbonatites with a quartz–bastnäsite matrix (±late Ca–Fe–Mg carbonates), i.e., “bastnäsite ores.” We studied fluid inclusions in quartz and late-stage Ca–Fe–Mg carbonates from these ore assemblages. Fluid inclusion data show that ore-related mineralization was formed in several stages. We propose the following TX evolution scheme for ore-related processes: (1) the formation of ancylite ores began under the influence of highly concentrated (>50 wt.%) sulphate fluids (with thenardite and anhydrite predominant in the daughter phases of inclusions) at a temperature above300–350 °C; (2) the completion of the formation of ancylite ores and their auto-metasomatic alteration occurred under the influence of concentrated (40–45 wt.%) carbonate fluids (shortite and synchysite–Ce in fluid inclusions) at a temperature above 250–275 °C; (3) bastnäsite ores deposited from low-concentrated (20–30 wt.%) hydrocarbonate–chloride fluids (halite, nahcolite, and/or gaylussite in fluid inclusions) at a temperature of 190–250 °C or higher. Later hydrothermal mineralization was related to the low-concentration hydrocarbonate–chloride fluids (<15 wt.% NaCl-equ.) at 150–200 °C. The presented data show the specific features of the mineral and fluid evolution of ore-related late-stage hydrothermal rare earth element (REE) mineralization of the Vuoriyarvi alkaline–ultramafic complex.

Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 25 ◽  
Author(s):  
Yu-heng Jia ◽  
Yan Liu

The Weishan carbonatite-related rare earth element (REE) deposit in China contains both high- and low-grade REE mineralization and is an informative case study for the investigation of magmatic–hydrothermal REE enrichment processes in such deposits. The main REE-bearing mineral is bastnäsite, with lesser parisite and monazite. REE mineralization occurred at a late stage of hydrothermal evolution and was followed by a sulfide stage. Barite, calcite, and strontianite appear homogeneous in back-scattered electron images and have high REE contents of 103–217, 146–13,120, and 194–16,412 ppm in their mineral lattices, respectively. Two enrichment processes were necessary for the formation of the Weishan deposit: Production of mineralized carbonatite and subsequent enrichment by magmatic–hydrothermal processes. The geological setting and petrographic characteristics of the Weishan deposit indicate that two main factors facilitated REE enrichment: (1) fractures that facilitated circulation of ore-forming fluids and provided space for REE precipitation and (2) high ore fluorite and barite contents resulting in high F− and SO42− concentrations in the ore-forming fluids that promoted REE transport and deposition.


2016 ◽  
Vol 80 (1) ◽  
pp. 5-30 ◽  
Author(s):  
A. M. Borst ◽  
H. Friis ◽  
T. Andersen ◽  
T. F. D. Nielsen ◽  
T. E. Waight ◽  
...  

AbstractThe layered agpaitic nepheline syenites (kakortokites) of the Ilímaussaq complex, South Greenland, host voluminous accumulations of eudialyte-group minerals (EGM). These complex Na-Ca-zirconosilicates contain economically attractive levels of Zr, Nb and rare-earth elements (REE), but have commonly undergone extensive autometasomatic/hydrothermal alteration to a variety of secondary mineral assemblages. Three EGM alteration assemblages are recognized, characterized by the secondary zirconosilicates catapleiite, zircon and gittinsite. Theoretical petrogenetic grid models are constructed to assess mineral stabilities in terms of component activities in the late-stage melts and fluids. Widespread alteration of EGM to catapleiite records an overall increase in water activity, and reflects interaction of EGM with late-magmatic Na-, Cl- and F-rich aqueous fluids at the final stages of kakortokite crystallization. Localized alteration of EGM and catapleiite to the rare Ca-Zr silicate gittinsite, previously unidentified at Ilímaussaq, requires an increase in CaO activity and suggests post-magmatic interaction with Ca-Sr bearing aqueous fluids. The pseudomorphic replacement of EGM in the kakortokites was not found to be associated with significant remobilization of the primary Zr, Nb and REE mineralization, regardless of the high concentrations of potential transporting ligands such as F and Cl. We infer that the immobile behaviour essentially reflects the neutral to basic character of the late-magmatic fluids, in which REE-F compounds are insoluble and remobilization of REE as Cl complexes is inhibited by precipitation of nacareniobsite-(Ce) and various Ca-REE silicates. A subsequent decrease in F– activity would furthermore restrict the mobility of Zr as hydroxyl-fluoride complexes, and promote precipitation of the secondary zirconosilicates within the confines of the replaced EGM domains.


1987 ◽  
Vol 51 (363) ◽  
pp. 665-670 ◽  
Author(s):  
T. A. P. Kwak ◽  
P. B. Abeysinghe

AbstractAt least six separate rare earth and uranium-bearing daughter crystals occur in fluid inclusions hosted by andraditic garnet from the Mary Kathleen REE-U ore skarn, Queensland, Australia. The daughter minerals are particularly high in La, Nd and Ce which reflects the relatively high concentration of these in the bulk ore (La2O3 = 33.5%, Nd2O3 = 9.1% and Ce2O2 = 51.5% of the 2.6 wt. % REE common in the ore). The host garnets themselves contain up to 7600 ppm REE and 5 to 2700 ppm U. The energy-dispersive spectra (EDS) are consistent with the following minerals: a (Y, Ce, U, Ca, Fe, Nb, Ta) mineral; a (Ca, Fe, Ce) carbonate(?) mineral; a (Fe, Ca, Y, Ce, Nb, Ta) mineral; a possible carbonate of La, Mn and Nd; a chlorite of Mn and La as well as a possible chloride or oxychloride of K, Mg, Mn and La. Their occurrence infers that relatively high concentrations of REE and U prevailed in the original, oxidized, concentrated (30–70 wt. % total dissolved salts), high-temperature (550–670°) ore solutions. Their presence as daughter crystals may be due to the fact that CaCl2 is a dominant salt in the solutions and that the latter's solubility was sufficiently high to ‘salt out’ the less soluble REE-U components.


2014 ◽  
Vol 2 (4) ◽  
pp. SJ47-SJ63 ◽  
Author(s):  
Anne E. McCafferty ◽  
Douglas B. Stoeser ◽  
Bradley S. Van Gosen

A prospectivity map for rare earth element (REE) mineralization at the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeastern Alaska, was calculated from high-resolution airborne gamma-ray data. The map displays areas with similar radioelement concentrations as those over the Dotson REE-vein-dike system, which is characterized by moderately high %K, eU, and eTh (%K, percent potassium; eU, equivalent parts per million uranium; and eTh, equivalent parts per million thorium). Gamma-ray concentrations of rocks that share a similar range as those over the Dotson zone are inferred to locate high concentrations of REE-bearing minerals. An approximately 1300-m-long prospective tract corresponds to shallowly exposed locations of the Dotson zone. Prospective areas of REE mineralization also occur in continuous swaths along the outer edge of the pluton, over known but undeveloped REE occurrences, and within discrete regions in the older Paleozoic country rocks. Detailed mineralogical examinations of samples from the Dotson zone provide a means to understand the possible causes of the airborne Th and U anomalies and their relation to REE minerals. Thorium is sited primarily in thorite. Uranium also occurs in thorite and in a complex suite of [Formula: see text] oxide minerals, which include fergusonite, polycrase, and aeschynite. These oxides, along with Y-silicates, are the chief heavy REE (HREE)-bearing minerals. Hence, the eU anomalies, in particular, may indicate other occurrences of similar HREE-enrichment. Uranium and Th chemistry along the Dotson zone showed elevated U and total REEs east of the Camp Creek fault, which suggested the potential for increased HREEs based on their association with U-oxide minerals. A uranium prospectivity map, based on signatures present over the Ross-Adams mine area, was characterized by extremely high radioelement values. Known uranium deposits were identified in the U-prospectivity map, but the largest tract occurs over a radioelement-rich granite phase within the pluton that is likely not related to mineralization. Neither mineralization type displays a well-defined airborne magnetic signature.


2021 ◽  
Author(s):  
◽  
Grace Elizabeth Frontin-Rollet

<p>The New Zealand offshore seabed hosts diverse resources including phosphate rich rocks. Phosphate rock deposits on the Chatham Rise have been the focus of previous investigations into their composition and mining potential; however, the diversity of the geochemistry of phosphate deposits, including their wider distribution beyond the Chatham Rise, their trace metal budget, and potential for ecotoxicity, remain poorly characterised. This study addresses some of these gaps by presenting a geochemical investigation, including trace metals, for a range of phosphate nodules from across the Chatham Rise, Bollons Seamount and offshore southeastern South Island. Elutriate and reconnaissance bioaccumulation experiments provide insights into the potential for ecotoxic trace metal release and effects on biota should sediment disturbance through mining activities occur.  The bulk chemistry of Bollons Seamount phosphorite nodules have been characterised for the first time, and show significant enrichment in first row transition metals; Co, Ni, Cu, Zn, in addition to Sr, Y, Mo, U, MnO, CaO and P2O5, and depletion in TiO2, Al2O3, MgO, K2O, FeO, SiO2, Sc, Cr, Ga, Rb, Cs, Hf, and Th relative to average upper continental crust. The cores of these nodules are dominated by apatite, quartz and anorthoclase phases, which are cross cut by Mn rich dendrites. The abundant presence of these minerals results in the significant differences in chemistry observed relative to Chatham Rise phosphorite nodules. The nodules also contain a secondary authigenic apatite phase, with a Mn crust rim. Significant rare earth element enrichment (REE) is most likely due to efficient scavenging by the Mn crust, resulting in seawater REE patterns characterised by negative Ce and Eu anomalies and heavy rare earth element enrichment.  The bulk geochemistry of the Chatham Rise and offshore South Island phosphorite nodules is characterised by enrichment in CaO, P2O5, Sr, U, Y, Mo and depletion in TiO2, Al2O3, MnO, MgO, FeO, K2O, Sc, Cr, Cu, Ga, Rb, Cs, Ba, Hf, Ta, Pb and Th relative to average upper continental crust. The low concentrations of Cd in Chatham Rise, offshore South Island, and Bollons Seamount phosphorites make them potentially suitable sources for direct application fertilizers.  The New Zealand marine phosphorite nodule deposits formed by repeated cycles of erosive bottom currents and phosphogenesis, resulting in the winnowing and concentration of the deposits. The iron pump model is proposed as a mechanism for the formation of apatite and associated mineral phases, giving the nodules their characteristic concentric zoning. The migration of the nodules through the oxic, suboxic, and anoxic zones of the sediment profile led to the formation of glaucony, apatite (suboxic zone), goethite (oxic zone), and pyrite with associated U enriched (anoxic zone) minerals. Rare earth elements (REE) in the Chatham Rise phosphorite nodules are associated with the glaucony rim minerals, and indicate that since the formation of the rims, very little diagenesis has occurred, preserving seawater REE patterns characterised by negative Ce and Eu anomalies and heavy REE enrichment. Site specific enrichments in trace elements Ba, V, Co, Ni, Cu, Zn, Y, Cd and Pb are attributed to either differences in incorporation of material into precursor carbonate e.g. volcanic materials, or higher fluxes of organic matter, delivering high concentrations of essential metals from biota, especially Cu and Zn.  Direct pore water measurements from surficial sediment of the Chatham Rise show high concentrations of dissolved Fe and Mn, along with Cu, indicating suboxic conditions. High Cu concentrations measured in sediment pore water suggest that Cu release requires monitoring should seafloor surficial sediments on the Chatham Rise be disturbed. However, the elutriate experiments were not able to resolve if Cu release by sediment disturbance would exceed Australian and New Zealand Environment Conservation Council (2000) environmental guideline trigger values.  The surrogate amphipod species Chaetocorophium c.f. lucasi shows promise as a biomonitor for disturbed marine sediments. Elements enriched in surficial sediments and phosphorite nodules, Hg, Pb, Fe, U and V, were not observed to bioaccumulate. Site specific differences in chemistry were observed, specifically in the different total relative bioaccumulation of Mo between amphipods exposed to sediments from two different sites. This suggests that future monitoring of chemical release during marine sediment disturbance requires the full geochemical characterisation of the substrate. Furthermore, fresh sediment and deep water should be used for future elutriate experiments, as storage of material by freeze-thawing and/or refrigeration causes mobilisation of some key trace metals such as U, V, Mo, Mn.</p>


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 394 ◽  
Author(s):  
Seconde Ntiharirizwa ◽  
Philippe Boulvais ◽  
Marc Poujol ◽  
Yannick Branquet ◽  
Cesare Morelli ◽  
...  

The Gakara Rare Earth Elements (REE) deposit is one of the world’s highest grade REE deposits, likely linked to a carbonatitic magmatic-hydrothermal activity. It is located near Lake Tanganyika in Burundi, along the western branch of the East African Rift. Field observations suggest that the mineralized veins formed in the upper crust. Previous structures inherited from the Kibaran orogeny may have been reused during the mineralizing event. The paragenetic sequence and the geochronological data show that the Gakara mineralization occurred in successive stages in a continuous hydrothermal history. The primary mineralization in bastnaesite was followed by an alteration stage into monazite. The U-Th-Pb ages obtained on bastnaesite (602 ± 7 Ma) and on monazite (589 ± 8 Ma) belong to the Pan-African cycle. The emplacement of the Gakara REE mineralization most likely took place during a pre-collisional event in the Pan-African belt, probably in an extensional context.


2014 ◽  
Vol 88 (s2) ◽  
pp. 1118-1119 ◽  
Author(s):  
Peirong LI ◽  
Baocheng PANG ◽  
Baohua WANG ◽  
Yuanqiang LI ◽  
Yequan ZHOU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document