Rare earth and uranium minerals present as daughter crystals in fluid inclusions, Mary Kathleen U-REE skarn, Queensland, Australia

1987 ◽  
Vol 51 (363) ◽  
pp. 665-670 ◽  
Author(s):  
T. A. P. Kwak ◽  
P. B. Abeysinghe

AbstractAt least six separate rare earth and uranium-bearing daughter crystals occur in fluid inclusions hosted by andraditic garnet from the Mary Kathleen REE-U ore skarn, Queensland, Australia. The daughter minerals are particularly high in La, Nd and Ce which reflects the relatively high concentration of these in the bulk ore (La2O3 = 33.5%, Nd2O3 = 9.1% and Ce2O2 = 51.5% of the 2.6 wt. % REE common in the ore). The host garnets themselves contain up to 7600 ppm REE and 5 to 2700 ppm U. The energy-dispersive spectra (EDS) are consistent with the following minerals: a (Y, Ce, U, Ca, Fe, Nb, Ta) mineral; a (Ca, Fe, Ce) carbonate(?) mineral; a (Fe, Ca, Y, Ce, Nb, Ta) mineral; a possible carbonate of La, Mn and Nd; a chlorite of Mn and La as well as a possible chloride or oxychloride of K, Mg, Mn and La. Their occurrence infers that relatively high concentrations of REE and U prevailed in the original, oxidized, concentrated (30–70 wt. % total dissolved salts), high-temperature (550–670°) ore solutions. Their presence as daughter crystals may be due to the fact that CaCl2 is a dominant salt in the solutions and that the latter's solubility was sufficiently high to ‘salt out’ the less soluble REE-U components.

2013 ◽  
Vol 448-453 ◽  
pp. 313-316
Author(s):  
Jing Jun Liu ◽  
Hao Yue Xiao ◽  
Ying Liu

The concentrations and fractionation of 14 rare earth elements (REEs) such as La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in filtered water, suspended particles and surface sediments at 10 sampling sites from Gansu, Ningxia and Inner Mongolia sections of the Yellow River of China were studied by HR-ICP-MS. The results demonstrated that the total concentrations of REEs (REEs) in filtered water varied from 0.017 to 0.079 μg/L and had high concentration at S3 (0.079), S1 (0.070) and S4 (0.063) in Inner Mongolia section, while in suspended particles and surface sediments, the ranges were 148.9-246.8 mg/kg (mean 176.4) and 109.9-252.0 mg/kg (mean 179.9), respectively, and showed high concentration at S9 (246.8), S7 (252.0), S8 (229.8) in Baiyin (Gansu section) and S1 (209.5) in Baotou (Inner Mongolia section). The ratios of L/H, δEu and δCe in suspended particles and surface sediments implied light-REEs enrichment in the water compared with the background value of Chinese soil. And the chondrite-normalized REEs patterns of the suspended particles and surface sediments also showed light REEs enrichment at S1, S7, S8 and S9. The high concentrations of REEs in the Yellow River were probably due to the weathering of soil and anthropogenic activities near the river.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 106
Author(s):  
Fujung Tsai ◽  
Wan-Chi Yao ◽  
Ming-Lung Lin

Extremely high concentrations of dust particles are occasionally generated from the riverbeds of Taiwan, affecting the visibility and traffic safety of the local and nearby areas. The condition is most severe during the winter monsoon when surface wind is strong. This study analyzes the concentration of particulate matter of 10 µm or less (PM10), wind direction, wind speed, temperature, and humidity of riverbed stations adjacent to the Daan, Dajia, Dadu, Zhuoshui, and Beinan Rivers in Taiwan for a period of two years. The weather conditions that cause the high concentration of PM10 are classified into typhoon and non-typhoon types, and the latter type is further classified into three stages: ahead of front, ahead of anticyclone, and behind anticyclone. The associated meteorological influences of these weather types on high-concentration events in the riverbed are explored. The monitoring data show that the hourly PM10 concentration of the four riverbed stations exceeded 125 µg m−3 for 35–465 h per year, and the maximum PM10 in the Daan (and Dajia), and Zhuoshui Rivers was more than 800 µg m−3. Weather analysis showed that the extreme PM10 concentration on the riverbed was caused by weather types: typhoon and ahead of anticyclone, in which the peak hourly concentration reached average values of more than 600 and 400 µg m−3, respectively. The high PM10 caused by the typhoon type mainly occurred in October, with an average wind speed of 6 m s−1, high temperature of 25 °C, and mostly northeasterly winds. The ahead of anticyclone type mainly occurred in December, with an average wind speed of 5 m s−1, and northeasterly and northwesterly winds. Both weather types of riverbed events were observed during the daytime, especially at noon time, when strong wind speed, high temperature, and low relative humidity is favorable for riverbed dust generation. On the other hand, the main months of the high PM10 concentrations of the ahead of front and behind anticyclone stages are February and April. The peak PM10 concentrations of these two types of riverbed events are both about 300 µg m−3, but sporadic riverbed dust in these weather stages is mixed with Asian dust or pollution transported to the rivers through weak northwesterly and northeasterly winds. The high concentrations of these two types of riverbed events can occur at any time; but for the Dadu River, the high concentrations are often observed in the morning, when land breezes from the southeast bring local pollutants to the river.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Alex Michailovic Asavin ◽  
Puha V. V. ◽  
Baskakov S. S. ◽  
Chesalova E. I. ◽  
Litvinov A. V.

We have developed specialized equipment based on mini-MDM hydrogen sensors and the WSN telecommunication technology for long-term monitoring of hydrogen content in the environment. Unlike existing methods, the developed equipment makes it possible to carry out measurements directly in the explosion zone with high discreteness in time. This equipment was tested at a large rare-earth deposit of the Lovozero Alkaline Pluton Karnasurt in the underground mining tunnel. We observed a short time very high concentration of hydrogen in the atmosphere (more than 3 orders of normal atmosphere concentration). This discovery is very important because at the time of the explosion one can create abnormally high concentrations of explosive mixtures of hydrocarbon gases that can lead to accidents. The high resolving power of the measurement equipment makes it possible to determine the shape of the anomaly hydrogen of such a concentration and to calculate the volumes of hydrogen released from the rocks, at first time in the practice. The shape of the anomaly usually consists of 2-3 additional peaks of the shape - "dragon-head-like peak". We make an first attempt is made to explain this form of anomaly in the article. The aim of the work in the estimation hydrogen emission in mining ore deposit rare earth elements.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 405 ◽  
Author(s):  
Ilya Prokopyev ◽  
Evgeniy Kozlov ◽  
Ekaterina Fomina ◽  
Anna Doroshkevich ◽  
Maxim Dyomkin

The Vuoriyarvi Devonian alkaline–ultramafic complex (northwest Russia) contains magnesiocarbonatites with rare earth mineralization localized in the Petyayan-Vara area. High concentrations of rare earth elements are found in two types of these rocks: (a) ancylite-dominant magnesiocarbonatites with ancylite–baryte–strontianite–calcite–quartz (±late Ca–Fe–Mg carbonates) ore assemblage, i.e., “ancylite ores”; (b) breccias of magnesiocarbonatites with a quartz–bastnäsite matrix (±late Ca–Fe–Mg carbonates), i.e., “bastnäsite ores.” We studied fluid inclusions in quartz and late-stage Ca–Fe–Mg carbonates from these ore assemblages. Fluid inclusion data show that ore-related mineralization was formed in several stages. We propose the following TX evolution scheme for ore-related processes: (1) the formation of ancylite ores began under the influence of highly concentrated (>50 wt.%) sulphate fluids (with thenardite and anhydrite predominant in the daughter phases of inclusions) at a temperature above300–350 °C; (2) the completion of the formation of ancylite ores and their auto-metasomatic alteration occurred under the influence of concentrated (40–45 wt.%) carbonate fluids (shortite and synchysite–Ce in fluid inclusions) at a temperature above 250–275 °C; (3) bastnäsite ores deposited from low-concentrated (20–30 wt.%) hydrocarbonate–chloride fluids (halite, nahcolite, and/or gaylussite in fluid inclusions) at a temperature of 190–250 °C or higher. Later hydrothermal mineralization was related to the low-concentration hydrocarbonate–chloride fluids (<15 wt.% NaCl-equ.) at 150–200 °C. The presented data show the specific features of the mineral and fluid evolution of ore-related late-stage hydrothermal rare earth element (REE) mineralization of the Vuoriyarvi alkaline–ultramafic complex.


Author(s):  
Yejian Wang ◽  
Xiqiu Han ◽  
Sven Petersen ◽  
Matthias Frische ◽  
Zhongyan Qiu ◽  
...  

The ultramafic-hosted Kairei vent field, located at 25&deg;19&prime;S, 70&deg;02&prime;E towards the northern end of the segment 1 of the Central Indian Ridge (CIR-S1) in a water depth of ~2450 m. This study aims to investigate the distribution of trace elements among sulfides of differing textures, and discuss the possible factors controlling the trace element distribution in those minerals by using LA-ICP-MS spot analyses as well as line scans. Our results show that there are distinct systematic trace element distributions throughout the different minerals:(1) Pyrite is divided into three types at the Kairei, including early-stage euhedral pyrites (py-I), sub-euhedral pyrites (py-II), and colloform pyrites (py-III). Pyrite is generally enriched in Mo, Au, As, Tl, Mn, and U. py-I have higher contents of Se, Te, Bi, and Ni, py-II are enriched in Au relative to py-I and py-III, but poor in Ni, py-III are enriched in Mo, Pb, and U but are poor in Se, Te, Bi, and Au. Variations in the concentrations of Se, Te, and Bi in pyrite are likely governed by the strong temperature gradient. Ni is generally lower than Co in pyrites, indicates that our samples precipitated at a high-temperature condition, whereas the extreme Co enrichment is likely from a magmatic heat source combined serpentinization reactions underlie the deposits. (2) Chalcopyrite is characterized by high concentrations of Co, Se, Te. The abundant of Se and Te in chalcopyrite cause by the high solubilities of Se and Te incorporated into chalcopyrite lattice at high temperature fluids. The concentration of Sb, As and Au is relatively low in chalcopyrite from the Kairei vent field. (3) Sphalerite from both the Zn-rich chimney is characterized by high concentrations of Sn, Co, Ga, Ge, Ag, Pb, Sb, As, and Cd, but depleted in Se, Te, Bi, Mo, Au, Ni, Tl, Mn, Ba, V, and U in comparison with the other minerals. The high concentration of Cd and Co is likely caused by the substitution of Cd2+ and Co2+ for Zn2+ in sphalerite. A high concentration of Pb accompanied by high Ag concentration in sphalerite indicating the Ag occurs in the microinclusions of Pb-bearing minerals such as galena. Au is generally low in sphalerite and strong correlate with Pb suggesting its presence in the microinclusions of galena. The strong correlation of As with Ge in sphalerite from Kairei suggests that they might precipitate under medium- to low-temperature with moderately reduced conditions. (4) Bornite-digenite is very low in most trace elements, except for Co, Se, and Bi. The high concentration of Se and Bi in all the sulfide minerals was observed in bornite-digenite can be explained by abundant Bi-selenide inclusions. Serpentinization in ultramafic-hosted hydrothermal systems might play an important role on Au enrichment in pyrite with low As contents. Compared with felsic-hosted seafloor massive sulfide (SMS) deposits, sulfide minerals from the ultramafic-hosted deposits show higher concentrations of Se and Te, but lower As, Sb, and Au concentrations attributed to the contribution of magmatic volatile input. Significant Se enrichment in chalcopyrite has been found from mafic-hosted SMSs indicate that the primary factor that controls the Se enrichment is its temperature-controlled mobility in fluids.


Author(s):  
Nael Mohammed Sarheed ◽  
Osamah Faisal Kokas ◽  
Doaa Abd Alabas Muhammed Ridh

The plant of castor is widely spread in the Iraqi land, and characterized with containing ricin toxin, which has a very serious effects, and because the seeds of this plant scattered in the agricultural soil and rivers water, which increases the exposure of humans and animals to these beans. Objective: This experiment was designed to study the effect of high concentration of castor bean powder in some physiological and biochemical parameters and changes in some tissues of the body, as well as trying to use doxycycline to reduce the effects of ingestion of these seeds. Materials and Methods: In the experiment, 24 local rabbits were raised and fed in the Animal House of the Faculty of Medicine / Al-Muthanna University, then divided into four groups and treated for three weeks (21 days), Control group: treated with normal saline solution (0.9) orally throughout the experiment, G1: was treated orally with a concentration of 25 mg / kg of castor bean powder daily during the experiment, G2 : orally treated 25 mg / kg of castor bean and 25 mg / kg of doxycycline, G3: orally treated 25 mg / kg of castor powder with 50 mg / kg of doxycycline daily throughout the trial period. Results: The results of the experiment showed significant changes (P less than 0.05) in all physiological and biochemical blood tests when compared with control group. There was a significant decrease in PCV, Hb, RBC, T.protein and body weights, while demonstrated a significant increase in WBC, Urea, Creatinine, ALT, AST and ALP, with distortions in liver and kidney of animals that treated with Castor beans. In contrast, the treatment with doxycycline and caster beans showed significant improvement reflected by a normal proportion in physiological tests and biochemical tests with improvement in the tissues when compared to control group. Conclusions: It can be concluded from this study that castor bean has high toxic and pathogenic effects that may be dangerous to the life of the organism. Therefore, it is advisable to be cautious of these pills and avoid exposure to them, also recommended to take high concentrations of doxycycline treatment when infected with castor bean poisoning.


Alloy Digest ◽  
2015 ◽  
Vol 64 (9) ◽  

Abstract Elektron EQ21 is a casting high strength magnesium alloy developed as a heat treatable alloy with rare earth element additions. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive, shear, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Mg-80. Producer or source: Magnesium Elektron Wrought Products, North America.


Alloy Digest ◽  
2001 ◽  
Vol 50 (5) ◽  

Abstract Aluchrom I SE is an oxidation resistant ferritic stainless steel alloyed with aluminum and rare earth elements. Applications include framework for catalytic automobile muffler systems. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-823. Producer or source: Krupp VDM.


2019 ◽  
pp. 43-48
Author(s):  
Ben Nengjun ◽  
Zhou Pengfei ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


Sign in / Sign up

Export Citation Format

Share Document