scholarly journals Hidden Middle Devonian Magmatism of North-Eastern Siberia: Age Constraints from Detrital Zircon U–Pb Data

Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 874
Author(s):  
Victoria B. Ershova ◽  
Andrei V. Prokopiev ◽  
Andrei K. Khudoley

We present new data on the tectonic evolution of north-eastern Siberia using an integrated provenance analysis based on U–Pb detrital zircon dating and sandstone petrography of Devonian sedimentary strata. Our petrographic data suggest that Upper Devonian sandstones of north-eastern Siberia were derived from a local provenance, supported by the widespread distribution of ca. 1900–2000 Ma magmatic events in the basement of the neighboring Ust’-Lena and Olenek uplifts. Devonian detrital zircon age distributions of the Devonian sandstones are similar to ages of Middle Paleozoic magmatic rocks of Yakutsk-Vilyui large igneous province (LIP). Therefore, we suggest that the studied sandstones were derived from proximally-located uplifted blocks composed of Proterozoic–Devonian rocks and Middle–Late Devonian volcanics. Moreover, the abundance of Middle–Late Devonian zircons is suggestive of a wider distribution of coeval magmatism across north-eastern Siberia than previously supposed. We propose that widespread Devonian magmatism associated with the Yakutsk-Vilyui LIP also occurred to the east of our study area and is now buried beneath thick Carboniferous–Jurassic sedimentary rocks of the eastern Siberian passive margin, subsequently deformed into the Late Jurassic–Cretaceous Verkhoyansk fold-and-thrust belt. We also propose that the major pulse of the Yakutsk-Vilyui LIP occurred in north-eastern Siberia during the Middle Devonian at ca. 390 Ma, some 15 million years earlier than within the Vilyui rift basin in eastern Siberia (ca. 375 Ma).

2013 ◽  
Vol 50 (10) ◽  
pp. 1007-1018 ◽  
Author(s):  
Luke P. Beranek ◽  
Victoria Pease ◽  
Robert A. Scott ◽  
Tonny B. Thomsen

Enigmatic successions of deep-water strata referred to as the Nesmith beds and Grant Land Formation comprise the exposed base of the Franklinian passive margin sequence in northern Ellesmere Island, Nunavut. To test stratigraphic correlations with Ediacaran to Cambrian shallow-water strata of the Franklinian platform that are inferred by regional basin models, >500 detrital zircons from the Nesmith beds and Grant Land Formation were analyzed for sediment provenance analysis using laser ablation (LA–ICP–MS) and ion-microprobe (SIMS) methods. Samples of the Nesmith beds and Grant Land Formation are characterized by 1000–1300, 1600–2000, and 2500–2800 Ma detrital zircon age distributions and indicate provenance from rock assemblages of the Laurentian craton. In combination with regional stratigraphic constraints, these data support an Ediacaran to Cambrian paleodrainage model that features the Nesmith beds and Grant Land Formation as the offshore marine parts of a north- to northeast-directed depositional network. Proposed stratigraphic correlations between the Nesmith beds and Ediacaran platformal units of northern Greenland are consistent with the new detrital zircon results. Cambrian stratigraphic correlations within northern Ellesmere Island are permissive, but require further investigation because the Grant Land Formation provenance signatures agree with a third-order sedimentary system that has been homogenized by longshore current or gravity-flow processes, whereas coeval shallow-water strata yield a restricted range of detrital zircon ages and imply sources from local drainage areas or underlying rock units. The detrital zircon signatures of the Franklinian passive margin resemble those for the Cordilleran and Appalachian passive margins of Laurentia, which demonstrates the widespread recycling of North American rock assemblages after late Neoproterozoic continental rifting and breakup of supercontinent Rodinia.


2012 ◽  
Vol 49 (11) ◽  
pp. 1316-1328 ◽  
Author(s):  
Owen A. Anfinson ◽  
Andrew L. Leier ◽  
Rich Gaschnig ◽  
Ashton F. Embry ◽  
Keith Dewing

New detrital zircon uranium–lead (U–Pb) ages and initial epsilon hafnium (εHf(i)) data from the Devonian clastic succession of the Canadian Arctic Islands refines the provenance of strata within the Franklinian Basin and provides constraints on the geologic evolution of the landmass responsible for the Ellesmerian Orogen. This study contributes more than 500 U–Pb ages and 32 εHf(i) values from the Blackley Formation and the Parry Islands Formation. The Middle Devonian Blackley Formation represents the onset of clastic sedimentation into the Franklinian Basin during the Devonian period. Detrital zircon from two samples yield U–Pb age populations of 380–470, 500–700, 900–2100, and 2550–3000 Ma. The population of 500–700 Ma U–Pb ages indicates a source exotic to the northern Laurentian margin and is attributed to a continental landmass located north of the present Canadian Arctic Islands (often referred to as Crockerland). This is some of the earliest evidence of 500–700 Ma detrital zircon deposition onto the northern Laurentian margin and indicates this northern landmass is at least partially accreted to Laurentia by early-Eifelian time. The Late Devonian Parry Islands Formation is the uppermost succession of Ellesmerian Orogen foreland basin sedimentation in the Franklinian Basin. Detrital zircon from four samples yield U–Pb age populations of 370–450, 470–750, 930–2100, and 2300–3200 Ma. The U–Pb ages suggest the Parry Islands Formation is derived from the northern source terrane (Crockerland) and indicate this landmass contains rocks similar to that of the east Greenland Caledonides, Pearya, and northeastern Baltica. Rim and core U–Pb double dates from the 500–700 Ma detrital zircon population and εHf(i) values from the 380–450, 520–550, and 650–710 Ma detrital zircon populations help constrain magma generation processes within Crockerland and suggest the zircons are derived from a juvenile lithosphere.


Geosphere ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 258-280
Author(s):  
Vladislav Powerman ◽  
Richard Hanson ◽  
Anna Nosova ◽  
Gary H. Girty ◽  
Jeremy Hourigan ◽  
...  

Abstract The Northern Sierra terrane is one of a series of Paleozoic terranes outboard of the western Laurentian margin that contain lithotectonic elements generally considered to have originated in settings far removed from their present relative locations. The Lower to Middle Paleozoic Shoo Fly Complex makes up the oldest rocks in the terrane and consists partly of thrust-imbricated deep-marine sedimentary strata having detrital zircon age signatures consistent with derivation from the northwestern Laurentian margin. The thrust package is structurally overlain by the Sierra City mélange, which formed within a mid-Paleozoic subduction zone and contains tectonic blocks of Ediacaran tonalite and sandstone with Proterozoic to early Paleozoic detrital zircon populations having age spectra pointing to a non–western Laurentian source. Island-arc volcanic rocks of the Upper Devonian Sierra Buttes Formation unconformably overlie the Shoo Fly Complex and are spatially associated with the Bowman Lake batholith, Wolf Creek granite stock, and smaller hypabyssal felsic bodies that intrude the Shoo Fly Complex. Here, we report new results from U-Pb sensitive high-resolution ion microprobe–reverse geometry (SHRIMP-RG) dating of 15 samples of the volcanic and intrusive rocks, along with geochemical studies of the dated units. In addition, we report U-Pb laser ablation–inductively coupled plasma–mass spectrometry ages for 50 detrital zircons from a feldspathic sandstone block in the Sierra City mélange, which yielded abundant Ordovician to Early Devonian (ca. 480–390 Ma) ages. Ten samples from the composite Bowman Lake batholith, which cuts some of the main thrusts in the Shoo Fly Complex, yielded an age range of 371 ± 9 Ma to 353 ± 3 Ma; felsic tuff in the Sierra Buttes Formation yielded an age of 363 ± 7 Ma; and three felsic hypabyssal bodies intruded into the Sierra City mélange yielded ages of 369 ± 4 Ma to 358 ± 3 Ma. These data provide a younger age limit for assembly of the Shoo Fly Complex and indicate that arc magmatism in the Northern Sierra terrane began with a major pulse of Late Devonian (Famennian) igneous activity. The Wolf Creek stock yielded an age of 352 ± 3 Ma, showing that the felsic magmatism extended into the early Mississippian. All of these rocks have similar geochemical features with arc-type trace-element signatures, consistent with the interpretation that they constitute a petrogenetically linked volcano-plutonic system. Field evidence shows that the felsic hypabyssal intrusions in the Sierra City mélange were intruded while parts of it were still unlithified, indicating that a relatively narrow time span separated subduction-related deformation in the Shoo Fly Complex and onset of Late Devonian arc magmatism. Following recent models for Paleozoic terrane assembly in the western Cordillera, we infer that the Shoo Fly Complex together with strata in the Roberts Mountains allochthon in Nevada migrated south along a sinistral transform boundary prior to the onset of arc magmatism in the Northern Sierra terrane. We suggest that the Shoo Fly Complex arrived close to the western Laurentian margin at the same time as the Roberts Mountains allochthon was thrust over the passive margin during the Late Devonian–early Mississippian Antler orogeny. This led to a change in plate kinematics that caused development of a west-facing Late Devonian island arc on the Shoo Fly Complex. Due to slab rollback, the arc front migrated onto parts of the Sierra City mélange that had only recently been incorporated into the accretionary complex. In the mélange, blocks of Ediacaran tonalite, as well as sandstones having detrital zircon populations with non–western Laurentian sources, may have been derived from the Yreka and Trinity terranes in the eastern Klamath Mountains, where similar rock types occur. If so, this suggests that these Klamath terranes were in close proximity to the developing accretionary complex in the Northern Sierra terrane in the Late Devonian.


2019 ◽  
Vol 131 (3-4) ◽  
pp. 695-698
Author(s):  
Ed Landing ◽  
Osman Salad Hersi ◽  
Lisa Amati ◽  
Stephen R. Westrop ◽  
David A. Franzi

Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2539-2551
Author(s):  
Luca Smeraglia ◽  
Nathan Looser ◽  
Olivier Fabbri ◽  
Flavien Choulet ◽  
Marcel Guillong ◽  
...  

Abstract. Foreland fold-and-thrust belts (FTBs) record long-lived tectono-sedimentary activity, from passive margin sedimentation, flexuring, and further evolution into wedge accretion ahead of an advancing orogen. Therefore, dating fault activity is fundamental for plate movement reconstruction, resource exploration, and earthquake hazard assessment. Here, we report U–Pb ages of syn-tectonic calcite mineralizations from four thrusts and three tear faults sampled at the regional scale across the Jura fold-and-thrust belt in the northwestern Alpine foreland (eastern France). Three regional tectonic phases are recognized in the middle Eocene–Pliocene interval: (1) pre-orogenic faulting at 48.4±1.5 and 44.7±2.6 Ma associated with the far-field effect of the Alpine or Pyrenean compression, (2) syn-orogenic thrusting at 11.4±1.1, 10.6±0.5, 9.7±1.4, 9.6±0.3, and 7.5±1.1 Ma associated with the formation of the Jura fold-and-thrust belt with possible in-sequence thrust propagation, and (3) syn-orogenic tear faulting at 10.5±0.4, 9.1±6.5, 5.7±4.7, and at 4.8±1.7 Ma including the reactivation of a pre-orogenic fault at 3.9±2.9 Ma. Previously unknown faulting events at 48.4±1.5 and 44.7±2.6 Ma predate the reported late Eocene age for tectonic activity onset in the Alpine foreland by ∼10 Myr. In addition, we date the previously inferred reactivation of pre-orogenic strike-slip faults as tear faults during Jura imbrication. The U–Pb ages document a minimal time frame for the evolution of the Jura FTB wedge by possible in-sequence thrust imbrication above the low-friction basal decollement consisting of evaporites.


2013 ◽  
Vol 23 (3) ◽  
pp. 1089-1103 ◽  
Author(s):  
Daniel Pastor-Galán ◽  
Gabriel Gutiérrez-Alonso ◽  
J. Brendan Murphy ◽  
Javier Fernández-Suárez ◽  
Mandy Hofmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document