scholarly journals Function of Interface Deposition of Calcium Sulfate in Pressure Acid Leaching of Black Shale-Hosted Vanadium

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 952
Author(s):  
Nannan Xue ◽  
Qiushi Zheng ◽  
Yimin Zhang

During pressure acid leaching process of black shale-hosted vanadium, increasing the reaction interface of muscovite dissolution can enhance the vanadium release. In this paper, calcium sulfate (CaSO4) deposition behavior and its effect on muscovite under K2SO4 assistance were focused on for demonstrating the function of CaSO4 on vanadium leaching from the black shale. Results showed that as K2SO4 mediated, the apparent activation energy of vanadium leaching and the apparent reaction order of sulfuric acid decreased from 24.37 kJ/mol to 16.63 kJ/mol and 2.7 to 1.9, respectively. The leaching rate and dependence on pH value were modified. The vanadium leaching acceleration owed to CaSO4 deposition on muscovite in the black shale. The ion absorption stimulations found that Ca2+ is confirmed to be easily absorbed on the six-membered ring cavity of silicon-oxygen tetrahedrons in muscovite structure prior to K+ and Na+. Meanwhile, SO42− provides two oxygen atoms to bond with Ca2+ absorbed on muscovite (001) surface. The continuous absorption and bonding create CaSO4 deposition on muscovite (001) surface which also involves the load transmitting. The stress load transmitting correlates to pore formation in muscovite particles. It was proved that massive micropores initiated and proliferated in the existing pores under K2SO4 assistance. The porosity caused by CaSO4 deposition greatly increased the reaction interface of muscovite dissolution and accelerate internal diffusion of H+ to the reaction interface, which can significantly weaken the vanadium leaching dependence on acid.

2017 ◽  
Vol 149 ◽  
pp. 989-998 ◽  
Author(s):  
Nan-nan Xue ◽  
Yi-min Zhang ◽  
Tao Liu ◽  
Jing Huang ◽  
Qiu-shi Zheng

2010 ◽  
Vol 104 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Minting Li ◽  
Chang Wei ◽  
Shuang Qiu ◽  
Xuejiao Zhou ◽  
Cunxiong Li ◽  
...  

2009 ◽  
Vol 98 (3-4) ◽  
pp. 308-313 ◽  
Author(s):  
Minting Li ◽  
Chang Wei ◽  
Gang Fan ◽  
Cunxiong Li ◽  
Zhigan Deng ◽  
...  

2010 ◽  
Vol 20 ◽  
pp. s112-s117 ◽  
Author(s):  
Min-ting LI ◽  
Chang WEI ◽  
Gang FAN ◽  
Cun-xiong LI ◽  
Zhi-gan DENG ◽  
...  

FLUIDA ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 81-92
Author(s):  
Ade Yanti Nurfaidah ◽  
Dheana Putri Lestari ◽  
Rheisya Talitha Azzahra ◽  
Dian Ratna Suminar

Abstrak Nikel merupakan unsur logam yang penggunaannya sudah dikenal dalam industri, terutama pada pelapisan logam dan paduan. Pengolahan nikel dari bijih nikel laterit (jenis Limonit) menggunakan proses hidrometalurgi Atmospheric Pressure Acid Leaching (APAL) yang dinilai lebih ekonomis karena pemakaian energi dan biaya operasional cukup rendah. Media pelarut yang digunakan berupa larutan asam sulfat (H2SO4). Sebelum dilakukan pengolahan, karakterisasi bijih dilakukan menggunakan X-Ray Diffraction (XRD), X-Ray Flourscence (XRF), dan Scanning Electron Microscopy (SEM). Metode penelitian yang dilakukan yaitu literature review. Hasil review dari beberapa artikel jurnal menunjukkan bahwa kadar nikel yang terkandung pada suatu bijih sekitar 1,42%, 2,94 dan 0,95% serta sisanya adalah pengotor. Kondisi operasi yang tepat akan menghasilkan pemurnian nikel yang cukup tinggi. Parameter kondisi operasi yang dapat memengaruhi proses pemisahan nikel diantaranya suhu operasi yang ditunjukan dengan semakin meningkatnya % ekstraksi nikel seiring dengan kenaikan suhu. Selain suhu operasi, konsentrasi pelarut juga salah satu parameter yang mempengaruhi % ekstraksi karena semakin tinggi ion H+ akan memudahkan proses pelarutan sehingga akan mengikat Nikel Oksida yang terdapat pada bijih. Suhu paling optimal untuk menghasilkan nikel dengan kemurnian tinggi dalam operasi pelindian atmosferik adalah 90°C dan konsentrasi asam sulfat 5 M.  Kata Kunci: Nikel, pelindian, suhu, konsentrasi   Abstract  Nickel is a metal element whose use is well known in industry, especially in metal and alloy plating. The processing of nickel from laterite nickel ore (Limonite type) uses a hydrometallurgical process of Atmospheric Pressure Acid Leaching (APAL) which is considered more economical because energy consumption and operational costs are quite low. The solvent medium used is a solution of sulfuric acid (H2SO4). Prior to processing, ore characterization was carried out using X-Ray Diffraction (XRD), X-Ray Flourscence (XRF), and Scanning Electron Microscopy (SEM). The research method literature review article. The results of reviews from several journal articles show that the nickel content contained in an ore is around 1.42%, 2.94% and 0.95% and the rest is impurity. The right operating conditions will result in relatively high nickel refining. The operating condition parameters that can affect the nickel separation process include the operating temperature which is indicated by the increasing % nickel extraction along with the increase in temperature. In addition to operating temperature, solvent concentration is also one of the parameters that affects the% extraction because the higher the H+ ion will facilitate the dissolving process so that it will bind to the Nickel Oxide contained in the ore. The optimal temperature to produce high-purity nickel in atmospheric leaching operations is 90°C and a sulfuric acid concentration of 5 M. Keywords: Nickel, leaching, temperature, concentration


2018 ◽  
Vol 775 ◽  
pp. 427-433
Author(s):  
Wei Sheng Chen ◽  
Chin Ting Liao ◽  
Chen Hsi Chang

For several decades, zinc-manganese batteries have been created to serve many forms of electronic products. However, every creative act has its destructive consequence. Plenty of waste element inside has caused the irreversible contamination to our environment.This study will focus on dealing with zinc-manganese batteries using environmental technology and hydrometallurgy methods, such as physical pretreatment, acid leaching and solvent extraction. The goal of this research will concentrate on the recovery of zinc and manganese from zinc-manganese batteries. The pretreatment processes include crushing, sieving and magnetic separation to separate the waste plastic, scraps of paper and impurity from waste zinc-manganese batteries. Before the process of the solvent extraction zinc-manganese batteries will be leached by specific acid first. In next step, the solvent extraction will be carried out and investigated. The parameters such as extractant concentration, extraction time, equilibrium pH value and organic-aqueous ratio (O/A) are analyzed in detail. Finally, the products of Zn and Mn are obtained in high-purity level and the recovery rates are about 92% for Zn and 95% for Mn.


Sign in / Sign up

Export Citation Format

Share Document