scholarly journals Collision of Bubbles with Solid Surface in the Presence of Specific Surfactants

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 442
Author(s):  
Maria Zednikova ◽  
Jakub Crha ◽  
Lucie Vobecká ◽  
Pavlína Basařová ◽  
Jiri Vejrazka ◽  
...  

The present work is motivated by the effort to understand basic processes occurring in three-phase systems where small bubbles interact with large particles. The simplified system of a single bubble rising in a stagnant liquid and colliding with a solid surface is studied. The effect of two specific surfactants, α-Terpineol and n-Octanol, is investigated. Two independent measurements are combined: (i) bubble–solid surface collision experiments and (ii) the bubble shape oscillations induced by a movable capillary. Both experiments are based on high-speed imaging resulting in the evaluation of the restitution coefficient characterizing the collision process and the relative damping time characterizing the bubble shape oscillations in the presence of surfactants. It was observed that even for small concentrations of a surfactant, both the bubble shape oscillations and the bubble bouncing on the solid surface are significantly suppressed. Two predictions for the restitution coefficient are proposed. The equations include a term characterizing the suppression of the damping time in the presence of surfactants and a term balancing the inertia, capillary and viscous forces in the liquid film separating the bubble and the solid surface. The proposed equations successfully predict the restitution coefficient of bubble bouncing on the solid surface in liquids with the addition of specific surfactants.

Soft Matter ◽  
2021 ◽  
Author(s):  
Siqi Zheng ◽  
Sam Dillavou ◽  
John M. Kolinski

When a soft elastic body impacts upon a smooth solid surface, the intervening air fails to drain, deforming the impactor. High-speed imaging with the VFT reveal rich dynamics and sensitivity to the impactor's elastic properties and the impact velocity.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Ling Zhou ◽  
Lingjie Zhang ◽  
Weidong Shi ◽  
Ramesh Agarwal ◽  
Wei Li

A coupled computational fluid dynamics (CFD)/discrete element method (DEM) is used to simulate the gas–solid two-phase flow in a laboratory-scale spouted fluidized bed. Transient experimental results in the spouted fluidized bed are obtained in a special test rig using the high-speed imaging technique. The computational domain of the quasi-three-dimensional (3D) spouted fluidized bed is simulated using the commercial CFD flow solver ANSYS-fluent. Hydrodynamic flow field is computed by solving the incompressible continuity and Navier–Stokes equations, while the motion of the solid particles is modeled by the Newtonian equations of motion. Thus, an Eulerian–Lagrangian approach is used to couple the hydrodynamics with the particle dynamics. The bed height, bubble shape, and static pressure are compared between the simulation and the experiment. At the initial stage of fluidization, the simulation results are in a very good agreement with the experimental results; the bed height and the bubble shape are almost identical. However, the bubble diameter and the height of the bed are slightly smaller than in the experimental measurements near the stage of bubble breakup. The simulation results with their experimental validation demonstrate that the CFD/DEM coupled method can be successfully used to simulate the transient gas–solid flow behavior in a fluidized bed which is not possible to simulate accurately using the granular approach of purely Euler simulation. This work should help in gaining deeper insight into the spouted fluidized bed behavior to determine best practices for further modeling and design of the industrial scale fluidized beds.


2015 ◽  
Vol 785 ◽  
Author(s):  
E. Q. Li ◽  
I. U. Vakarelski ◽  
S. T. Thoroddsen

When a drop impacts onto a solid surface, the lubrication pressure in the air deforms its bottom into a dimple. This makes the initial contact with the substrate occur not at a point but along a ring, thereby entrapping a central disc of air. We use ultra-high-speed imaging, with 200 ns time resolution, to observe the structure of this first contact between the liquid and a smooth solid surface. For a water drop impacting onto regular glass we observe a ring of microbubbles, due to multiple initial contacts just before the formation of the fully wetted outer section. These contacts are spaced by a few microns and quickly grow in size until they meet, thereby leaving behind a ring of microbubbles marking the original air-disc diameter. On the other hand, no microbubbles are left behind when the drop impacts onto molecularly smooth mica sheets. We thereby conclude that the localized contacts are due to nanometric roughness of the glass surface, and the presence of the microbubbles can therefore distinguish between glass with 10 nm roughness and perfectly smooth glass. We contrast this entrapment topology with the initial contact of a drop impacting onto a film of extremely viscous immiscible liquid, where the initial contact appears to be continuous along the ring. Here, an azimuthal instability occurs during the rapid contraction at the triple line, also leaving behind microbubbles. For low impact velocities the nature of the initial contact changes to one initiated by ruptures of a thin lubricating air film.


2020 ◽  
Vol 6 (11) ◽  
pp. eaay3499 ◽  
Author(s):  
Nathan Blanken ◽  
Muhammad Saeed Saleem ◽  
Carlo Antonini ◽  
Marie-Jean Thoraval

Drop impact on solid surfaces is encountered in numerous natural and technological processes. Although the impact of single-phase drops has been widely explored, the impact of compound drops has received little attention. Here, we demonstrate a self-lubrication mechanism for water-in-oil compound drops impacting on a solid surface. Unexpectedly, the core water drop rebounds from the surface below a threshold impact velocity, irrespective of the substrate wettability. This is interpreted as the result of lubrication from the oil shell that prevents contact between the water core and the solid surface. We combine side and bottom view high-speed imaging to demonstrate the correlation between the water core rebound and the oil layer stability. A theoretical model is developed to explain the observed effect of compound drop geometry. This work sets the ground for precise complex drop deposition, with a strong impact on two- and three-dimensional printing technologies and liquid separation.


2019 ◽  
Vol 47 (3) ◽  
pp. 196-210
Author(s):  
Meghashyam Panyam ◽  
Beshah Ayalew ◽  
Timothy Rhyne ◽  
Steve Cron ◽  
John Adcox

ABSTRACT This article presents a novel experimental technique for measuring in-plane deformations and vibration modes of a rotating nonpneumatic tire subjected to obstacle impacts. The tire was mounted on a modified quarter-car test rig, which was built around one of the drums of a 500-horse power chassis dynamometer at Clemson University's International Center for Automotive Research. A series of experiments were conducted using a high-speed camera to capture the event of the rotating tire coming into contact with a cleat attached to the surface of the drum. The resulting video was processed using a two-dimensional digital image correlation algorithm to obtain in-plane radial and tangential deformation fields of the tire. The dynamic mode decomposition algorithm was implemented on the deformation fields to extract the dominant frequencies that were excited in the tire upon contact with the cleat. It was observed that the deformations and the modal frequencies estimated using this method were within a reasonable range of expected values. In general, the results indicate that the method used in this study can be a useful tool in measuring in-plane deformations of rolling tires without the need for additional sensors and wiring.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1187-1199
Author(s):  
Qaed M. Ali ◽  
Mohammed M. Ezzalden

BLDC motors are characterized by electronic commutation, which is performed by using an electric three-phase inverter. The direct control system of the BLDC motor consists of double loops; including the inner-loop for current regulating and outer-loop for speed control. The operation of the current controller requires feedback of motor currents; the conventional current controller uses two current sensors on the ac side of the inverter to measure the currents of two phases, while the third current would be accordingly calculated. These two sensors should have the same characteristics, to achieve balanced current measurements. It should be noted that the sensitivity of these sensors changes with time. In the case of one sensor fails, both of them must be replaced. To overcome this problem, it is preferable to use one sensor instead of two. The proposed control system is based on a deadbeat predictive controller, which is used to regulate the DC current of the BLDC motor. Such a controller can be considered as digital controller mode, which has fast response, high precision and can be easily implemented with microprocessor. The proposed control system has been simulated using Matlab software, and the system is tested at a different operating condition such as low speed and high speed.


Sign in / Sign up

Export Citation Format

Share Document