scholarly journals Fumarolic Pathways Were Structurally Controlled by a Strike-Slip Fault System Beneath the Bishop Tuff, Bishop, California

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1167
Author(s):  
William T. Jenkins ◽  
Christian Klimczak ◽  
Patrick M. Trent ◽  
Douglas E. Crowe

The Volcanic Tableland, a plateau at the northern end of Owens Valley, CA, is capped by the rhyolitic Bishop Tuff. It hosts many tectonic and volcanic landforms, including hundreds of fault scarps, large joint sets, and inactive fumarolic mounds and ridges. The 1986 Chalfant Valley earthquake sequence shed light on a blind strike-slip fault system beneath the Bishop Tuff. The spatial relationships of the volcanic and tectonic structures have previously been well documented, however, the mechanisms of formation of structures and their enhancement as fumarolic pathways remain largely unexplored. We collected fault kinematic indicators, joint orientations, and documented fumarolic alterations of microcrystalline quartz in the Bishop Tuff and combined those field observations with fault response modeling to assess whether strike-slip activity played a key role in the development of fumarolic pathways. We found field evidence of dip-slip and strike-slip faulting that are consistent with the overall transtensional regional tectonics. Our modeling indicates that a blind strike-slip fault system would dilate joints in the overlying Bishop Tuff with preferred orientations that match observed orientations of joints along which fumarolic activity occurred. Our results imply that the localization of fumaroles was tectonically controlled and that fault activity in the valley floor likely initiated prior to tuff emplacement.

Lithosphere ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 238-253 ◽  
Author(s):  
David A. Ferrill ◽  
Alan P. Morris ◽  
Ronald N. McGinnis ◽  
Kevin J. Smart ◽  
Morgan J Watson-Morris ◽  
...  

2012 ◽  
Vol 12 (10) ◽  
pp. 3151-3168 ◽  
Author(s):  
H. Perea ◽  
E. Gràcia ◽  
P. Alfaro ◽  
R. Bartolomé ◽  
C. Lo Iacono ◽  
...  

Abstract. The Bajo Segura fault zone (BSFZ) is the northern terminal splay of the Eastern Betic shear zone (EBSZ), a large left-lateral strike-slip fault system of sigmoid geometry stretching more than 450 km from Alicante to Almería. The BSFZ extends from the onshore Bajo Segura basin further into the Mediterranean Sea and shows a moderate instrumental seismic activity characterized by small earthquakes. Nevertheless, the zone was affected by large historical earthquakes of which the largest was the 1829 Torrevieja earthquake (IEMS98 X). The onshore area of the BSFZ is marked by active transpressive structures (faults and folds), whereas the offshore area has been scarcely explored from the tectonic point of view. During the EVENT-SHELF cruise, a total of 10 high-resolution single-channel seismic sparker profiles were obtained along and across the offshore Bajo Segura basin. Analysis of these profiles resulted in (a) the identification of 6 Quaternary seismo-stratigraphic units bounded by five horizons corresponding to regional erosional surfaces related to global sea level lowstands; and (b) the mapping of the active sub-seafloor structures and their correlation with those described onshore. Moreover, the results suggest that the Bajo Segura blind thrust fault or the Torrevieja left-lateral strike-slip fault, with prolongation offshore, could be considered as the source of the 1829 Torrevieja earthquake. These data improve our understanding of present deformation along the BSFZ and provide new insights into the seismic hazard in the area.


2021 ◽  
Author(s):  
Vincent F. Verwater ◽  
Eline Le Breton ◽  
Mark R. Handy ◽  
Vincenzo Picotti ◽  
Azam Jozi Najafabadi ◽  
...  

Abstract. Neogene indentation of the Adriatic plate into Europe led to major modifications of the Alpine orogenic structures and style of deformation in the Eastern Alps. Especially, the offset of the Periadriatic Fault by the Northern Giudicarie Fault marks the initiation of strike-slip faulting and lateral extrusion of the Eastern Alps. Questions remain on the exact role of this fault zone in changes of the Alpine orogen at depth. This necessitates quantitative analysis of the shortening, kinematics and depth of decoupling underneath the Northern Giudicarie Fault and associated fold-and thrust belt in the Southern Alps. Tectonic balancing of a network of seven cross sections through the Giudicarie Belt parallel to the local shortening direction reveals that it comprises two kinematic domains with different amounts and partly overlapping ages of shortening. These two domains are delimitated by the NW-SE oriented strike-slip Trento-Cles – Schio-Vicenza fault system, cross-cutting the Southern Alpine orogenic front in the south and merging with the Northern Giudicarie Fault in the north. The SW kinematic domain (Val Trompia sector) accommodated at least ~18 km of Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW kinematic domain experienced a minimum of ~12–22 km shortening, whereas the NE kinematic domain underwent at least ~25–35 km shortening. Together, these domains contributed to an estimated ~53–75 km of sinistral strike-slip motion along the Northern Giudicarie Fault, implying that (most of) the offset of the Periadriatic Fault is due to Late Oligocene to Neogene indentation of the Adriatic plate into the Eastern Alps. Moreover, the faults linking the Giudicarie Belt with the Northern Giudicarie Fault reach ~15–20 km depth, indicating a thick-skinned tectonic style of deformation. These fault detachments may also connect at depth with a lower crustal Adriatic wedge that protruded north of the Periadriatic Fault and was responsible for N-S shortening and eastward escape of deeply exhumed units in the Tauern Window. Finally, the east-west lateral variation of shortening indicates internal deformation and lateral variation in strength of the Adriatic indenter, related to Permian – Mesozoic tectonic structures and paleogeographic domains.


2018 ◽  
Author(s):  
Emanuela Falcucci ◽  
Maria Eliana Poli ◽  
Fabrizio Galadini ◽  
Giancarlo Scardia ◽  
Giovanni Paiero ◽  
...  

Abstract. We investigated the eastern corner of northeastern Italy, where the NW-SE trending dextral strike-slip fault systems of western Slovenia intersects the south-verging fold and thrust belt of the eastern Southern Alps . The area suffered the largest earthquakes of the region, among which are the 1511 (Mw 6.3) event and the two major shocks of the 1976 seismic sequence, with Mw = 6.4 and 6.1 respectively. The Colle Villano thrust and the Borgo Faris-Cividale strike-slip fault have been first analyzed by interpreting industrial seismic lines and then by performing morpho-tectonic and paleoseismological analyses. These different datasets indicate that the two structures define an active, coherent transpressive fault system that activated twice in the past two millennia, with the last event occurring around the 15th–17th century. The chronological information, and the location of the investigated fault system suggest its activation during the 1511 earthquake.


Sign in / Sign up

Export Citation Format

Share Document