scholarly journals Buddleja officinalis Maximowicz Extract Inhibits Lipid Accumulation on Adipocyte Differentiation in 3T3-L1 Cells and High-Fat Mice

Molecules ◽  
2012 ◽  
Vol 17 (7) ◽  
pp. 8687-8695 ◽  
Author(s):  
Changhyun Roh ◽  
Min-Kyoung Park ◽  
Hee-June Shin ◽  
Uhee Jung ◽  
Jin-Kyu Kim
2020 ◽  
Author(s):  
Hang-Hee Cho ◽  
Soo-Jung Lee ◽  
Sung-Ho Kim ◽  
Sun-Hee Jang ◽  
Chungkil Won ◽  
...  

Abstract Background: The aim of this study was to investigate the effect of Acer tegmentosum Maxim (ATM) on adipocyte differentiation in 3T3-L1 adipocyte-derived cells and anti-obesity properties in high fat diet (HFD)-induced obese rats. Methods: 3T3-L1 adipocytes and HFD-induced obese rats were treated with ATM, and its effect on gene expression was analyzed using RT-PCR and Western blotting experiments. Results: Cellular lipid contents in DMI (dexamethasone, 3-isobutyl-1-methylxanthine, and insulin mixture)-treated cells increased, while ATM treatment caused a significant reduction in lipid accumulation in differentiated 3T3-L1 cells. ATM caused inhibition of adipogenesis via down-regulation of the CCAAT/enhancer binding protein β (C/EBPβ), C/EBPα, and peroxisome proliferator-activated receptor γ (PPARγ) expressions in 3T3-L1 cells. Moreover, treatment with ATM caused a decrease in the expressions of adipocyte-specific genes, such as adipocyte fatty acid-binding protein-2 (aP2), fatty acid synthase (FAS), and lipoprotein lipase (LPL), compared with DMI-stimulated adipocytes. In addition, phosphorylation levels of protein kinase B (Akt) and its downstream substrate, glycogen synthase kinase 3β (GSK3β), were significantly decreased by ATM treatment of 3T3-L1 adipocytes. Together, these results indicated that ATM caused inhibition of both adipocyte differentiation via suppression of the C/EBP family and PPARγ expressions and the Akt signaling pathway in 3T3-L1 adipocytes. In the present study, we further investigated anti-obesity effects of ATM on HFD-induced obese rats. Rats fed with HFD demonstrated elevations in body weight gain, while the administration of ATM significantly reversed BW gains and adipose tissue weights in rats fed HFD. ATM supplementation also caused a decrease in the circulating triglyceride levels and total cholesterol levels and led to inhibition of lipid accumulation in the adipose tissues in HFD-induced obesity in rats. Furthermore, epididymal fat exhibited larger adipocytes in the HFD group, whereas the ATM-treated group was significantly smaller than that of HFD group. These results strongly demonstrate that ATM administration caused a reduction in adiposity via attenuation in adipose tissue mass and adipocyte size. Conclusion: These finding demonstrated that ATM exerted anti-obesity effects through inhibition of adipocyte differentiation and adipogenesis, leading to a decrease in BW and fat tissue mass in HFD-induced obesity in rats.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 230
Author(s):  
Shugo Hosoda ◽  
Yumi Kawazoe ◽  
Toshikazu Shiba ◽  
Satoshi Numazawa ◽  
Atsufumi Manabe

Ginkgo seed coat is rarely used and is typically discarded, due to its offensive odor and its toxicity. Ginkgo vinegar is a fermented product of ginkgo seed coat, and fermentation removes the bad smell and most of the toxicity. Thus, ginkgo vinegar contains very low concentrations of toxic components. The present study examined the anti-obesity effect of ginkgo vinegar in mice fed a high-fat diet and its inhibition of adipogenesis in 3T3-L1 cells. Ginkgo vinegar suppressed high-fat diet-induced body weight gain and reduced the size of fat cells in mice. Ginkgo vinegar suppressed the expression of C/EBPδ and PPARγ, key proteins in adipogenesis, and inhibited lipid accumulation in 3T3-L1 cells that were induced to become adipocytes. These results suggested that ginkgo vinegar inhibited adipocyte differentiation. On the other hand, a corresponding concentration of acetic acid had significantly less effect on lipid accumulation and virtually no effect on adipogenic gene expression. These results suggested that, similar to Ginkgo biloba extract, ginkgo vinegar might prevent and improve adiposity. Therefore, ginkgo seed coat could be a useful material for medicinal ingredients.


2021 ◽  
Author(s):  
Yilin Liu ◽  
Chunyan Xie ◽  
Zhenya Zhai ◽  
Ze-yuan Deng ◽  
Hugo R. De Jonge ◽  
...  

This study aimed to investigate the effect of uridine on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet-fed mice.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Nicola Aberdein ◽  
Jussara M do Carmo ◽  
Zhen Wang ◽  
Taolin Fang ◽  
Cecilia P de Lara ◽  
...  

Obese subjects are often resistant to leptin’s metabolic effects although blood pressure (BP) and sympathetic nervous system responses appear to be preserved. Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of leptin signaling, may play a role in promoting this selective leptin resistance and causing metabolic dysfunction in obesity. Our previous studies suggest that the chronic BP responses to leptin are mediated via activation of pro-opiomelanocortin (POMC) neurons. The goal of this study was to determine if PTP1B in POMC neurons differentially controls metabolic functions and BP in mice fed a high fat diet (HFD). Male mice with POMC specific PTP1B deletion (POMC/PTP1B -/- ) and littermate controls (PTP1B flox/flox ) were fed a HFD from 6 to 22 wks of age. Baseline BP after 16 weeks of a HFD (95±2 vs. 95±3 mmHg) and BP responses to acute stress (Δ32±0 vs. Δ32±6 mmHg), measured by telemetry, were not different in POMC/PTP1B -/- compared to control mice, respectively. Heart rate (HR) was not different in POMC/PTP1B -/- and control mice during acute stress (699±4 vs. 697±15 bpm, respectively). Total body weight (TBW) and fat mass were reduced at 20 weeks of age in POMC/PTP1B -/- compared to controls (36.7±0.1 vs. 42.0±1 g TBW and 12.7±0.4 vs. 16.1±1.0 g fat mass, respectively). Liver weight of POMC/PTP1B -/- mice was less than in controls, and this was evident even when liver weight was normalized as % of TBW (4.5±0.2 vs. 5.0±0.2 %). POMC/PTP1B -/- males had reduced liver lipid accumulation compared to controls as measured by EchoMRI (0.08±0.03 vs. 0.15±0.03 g/g liver weight). Glucose tolerance was also improved by 46% in POMC/PTP1B -/- compared to controls as measured by AUC, 25856±1683 vs. 47267±5616 mg/dLx120min, respectively. These findings indicate that PTP1B signaling in POMC neurons plays a crucial role in regulating liver lipid accumulation and glucose tolerance but does not appear to mediate changes in BP or BP responses to acute stress in mice fed a high HFD (supported by NHLBI-PO1HL51971 and NIGMS P20GM104357)


2021 ◽  
Author(s):  
sheng Qiu ◽  
Zerong Liang ◽  
Qinan Wu ◽  
Miao Wang ◽  
Mengliu Yang ◽  
...  

Abstract BackgroundNuclear factor erythroid 2-related factor 2 (Nrf2) is reportedly involved in hepatic lipid metabolism, but the results are contradictory and the underlying mechanism thus remains unclear. Herein we focused on elucidating the effects of Nrf2 on hepatic adipogenesis and on determining the possible underlying mechanism. We established a metabolic associated fatty liver disease (MAFLD) model in high fat diet (HFD) fed Nrf2 knockout (Nrf2 KO) mice; further, a cell model of lipid accumulation was established using mouse primary hepatocytes (MPHs) treated with free fatty acids (FAs). Using these models, we investigated the relationship between Nrf2 and autophagy and its role in the development of MAFLD.ResultsWe observed that Nrf2 expression levels were up-regulated in patients with MAFLD and diet-induced obese mice. Nrf2 deficiency led to hepatic lipid accumulation in vivo and in vitro, in addition to, promoting lipogenesis mainly by increasing SREBP-1 activity. Moreover, Nrf2 deficiency attenuated autophagic flux and inhibited the fusion of autophagosomes and lysosomes in vivo and in vitro. Weakened autophagy caused reduced lipolysis in the liver. Importantly, Chromatin immunoprecipitation-qPCR (ChIP-qPCR) and dual-luciferase assay results proved that Nrf2 bound to LAMP1 promoter and regulated its transcriptional activity. We accordingly report that Nrf2-LAMP1 interaction has an indispensable role in Nrf2-regulated hepatosteatosis. ConclusionsThese data collectively confirm that Nrf2 deficiency promotes hepatosteatosis by enhancing SREBP-1 activity and attenuating autophagy. To conclude, our data reveal a novel multi-pathway effect of Nrf2 on lipid metabolism in the liver, and we believe that multi-target intervention of Nrf2 signaling is a promising new strategy for the prevention and treatment of MAFLD.


2016 ◽  
Vol 62 (Suppl.1) ◽  
pp. 144-145
Author(s):  
SAORI KAKEHI ◽  
YOSHIFUMI TAMURA ◽  
KAGEUMI TAKENO ◽  
YUKO SAKURAI ◽  
MINAKO KAWAGUCHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document