scholarly journals Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement

Molecules ◽  
2017 ◽  
Vol 22 (2) ◽  
pp. 189 ◽  
Author(s):  
Ignacio Belda ◽  
Javier Ruiz ◽  
Adelaida Esteban-Fernández ◽  
Eva Navascués ◽  
Domingo Marquina ◽  
...  
2021 ◽  
Vol 22 (3) ◽  
pp. 1196
Author(s):  
Javier Vicente ◽  
Fernando Calderón ◽  
Antonio Santos ◽  
Domingo Marquina ◽  
Santiago Benito

The surfaces of grapes are covered by different yeast species that are important in the first stages of the fermentation process. In recent years, non-Saccharomyces yeasts such as Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, and Pichia kluyveri have become popular with regard to winemaking and improved wine quality. For that reason, several manufacturers started to offer commercially available strains of these non-Saccharomyces species. P. kluyveri stands out, mainly due to its contribution to wine aroma, glycerol, ethanol yield, and killer factor. The metabolism of the yeast allows it to increase volatile molecules such as esters and varietal thiols (aroma-active compounds), which increase the quality of specific varietal wines or neutral ones. It is considered a low- or non-fermentative yeast, so subsequent inoculation of a more fermentative yeast such as Saccharomyces cerevisiae is indispensable to achieve a proper fermented alcohol. The impact of P. kluyveri is not limited to the grape wine industry; it has also been successfully employed in beer, cider, durian, and tequila fermentation, among others, acting as a promising tool in those fermentation processes. Although no Pichia species other than P. kluyveri is available in the regular market, several recent scientific studies show interesting improvements in some wine quality parameters such as aroma, polysaccharides, acid management, and color stability. This could motivate yeast manufacturers to develop products based on those species in the near future.


2014 ◽  
Vol 20 (2) ◽  
pp. 199-207 ◽  
Author(s):  
G. Zara ◽  
I. Mannazzu ◽  
A. Del Caro ◽  
M. Budroni ◽  
M.B. Pinna ◽  
...  

2020 ◽  
Author(s):  
Wenyao Zhu ◽  
Frank Benkwitz ◽  
Paul Kilmartin

<div>In this paper, we report on the application of the static headspace-gas chromatography-ion mobility spectrometry (SHS-GC-IMS) instrument in the field of wine aroma analysis and its potential in constructing a prediction model for the quality gradings of wines. The easy-to-operate, cost effective SHS-GC-IMS instrument was innovatively used for a non-targeted search for volatile compounds in Sauvignon Blanc wine, with the identification of volatiles seldom before reported. The wine aroma profile acquired by the instrument was organically and innovatively combined with advanced classification models, inspired by the computer science community, to produce high classification accuracy in terms of wine quality gradings. Useful insights were also extracted by using advanced interpretation methods on complex models to learn the important volatiles correlated with wine quality grading.</div>


2020 ◽  
Author(s):  
Wenyao Zhu ◽  
Frank Benkwitz ◽  
Paul Kilmartin

<div>In this paper, we report on the application of the static headspace-gas chromatography-ion mobility spectrometry (SHS-GC-IMS) instrument in the field of wine aroma analysis and its potential in constructing a prediction model for the quality gradings of wines. The easy-to-operate, cost effective SHS-GC-IMS instrument was innovatively used for a non-targeted search for volatile compounds in Sauvignon Blanc wine, with the identification of volatiles seldom before reported. The wine aroma profile acquired by the instrument was organically and innovatively combined with advanced classification models, inspired by the computer science community, to produce high classification accuracy in terms of wine quality gradings. Useful insights were also extracted by using advanced interpretation methods on complex models to learn the important volatiles correlated with wine quality grading.</div>


OENO One ◽  
2013 ◽  
Vol 47 (3) ◽  
pp. 159 ◽  
Author(s):  
Gabriel Balint ◽  
Andrew G. Reynolds

<p style="text-align: justify;"><strong>Aim</strong>: The impacts of partial root zone drying (PRD) and regulated deficit irrigation (RDI) on soil moisture, vine water status, yield components, fruit composition and wine sensory profile of Sauvignon blanc were studied in a cool climate region.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Field experiments were conducted in a commercial Sauvignon blanc block in Ontario, Canada between 2006 and 2008. Treatments were: non-irrigated control, PRD, full irrigation [100% of crop evapotranspiration (ET<sub>c</sub>)] and one level of RDI (25% ET<sub>c</sub>). Treatments began immediately after fruit set and continued until the beginning of September. Reference evapotranspiration (ET<sub>o</sub>) was calculated using the Penman–Monteith equation. Soil moisture and vine water status (leaf water potential and transpiration rate) in the PRD treatments were generally less than in 100% ET<sub>c</sub> but higher than in non-irrigated and 25% ET<sub>c</sub> treatments. Almost all treatments were different than non-irrigated vines in fruit composition and wine sensory attributes. RDI strategies were more consistent across vintages than the PRD treatments in their effect on vine water status, grape composition and sensory profiles.</p><p style="text-align: justify;"><strong>Conclusions</strong>: Use of RDI or PRD in cool climates during dry and warm years can improve grape composition. In very dry and hot seasons, like that of 2007, irrigation improved grape composition and wine aroma typicity. RDI enhanced fruity aroma attributes, which suggests that this could be a viable strategy to improve grape and wine quality in cool areas. However, due to high climatic variation over the period studied, no consistent pattern of irrigation effects was found for berry composition, suggesting that plant water status was not the only factor that controlled fruit and wine quality.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: To the best of our knowledge, this study is the first evaluation of PRD in a cool, humid climate, and highlights the potential value of both RDI and PRD irrigation techniques in cool climate regions, particularly during dry growing seasons.</p>


2020 ◽  
Vol 8 (10) ◽  
pp. 1552 ◽  
Author(s):  
Sae-Byuk Lee ◽  
Heui-Dong Park

The Muscat Bailey A (MBA) grape, one of the most prominent grape cultivars in Korea, contains considerable amounts of monoterpene alcohols that have very low odor thresholds and significantly affect the perception of wine aroma. To develop a potential wine starter for Korean MBA wine, nine types of non-Saccharomyces yeasts were isolated from various Korean food materials, including nuruk, Sémillon grapes, persimmons, and Muscat Bailey A grapes, and their physiological, biochemical, and enzymatic properties were investigated and compared to the conventional wine fermentation strain, Saccharomyces cerevisiae W-3. Through API ZYM analysis, Wickerhamomyces anomalus JK04, Hanseniaspora vineae S7, Hanseniaspora uvarum S8, Candida railenensis S18, and Metschnikowia pulcherrima S36 were revealed to have β-glucosidase activity. Their activities were quantified by culturing in growth medium composed of different carbon sources: 2% glucose, 1% glucose + 1% cellobiose, and 2% cellobiose. W. anomalus JK04 and M. pulcherrima S36 showed the highest β-glucosidase activities in all growth media; thus, they were selected and utilized for MBA wine fermentation. MBA wines co-fermented with non-Saccharomyces yeasts (W. anomalus JK04 or M. pulcherrima S36) and S. cerevisiae W-3 showed significantly increased levels of linalool, citronellol, and geraniol compared to MBA wine fermented with S. cerevisiae W-3 (control). In a sensory evaluation, the flavor, taste, and overall preference scores of the co-fermented wines were higher than those for the control wine, suggesting that W. anomalus JK04 and M. pulcherrima S36 are favorable wine starters for improving Korean MBA wine quality.


OENO One ◽  
2017 ◽  
Vol 51 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Alexandre Pons ◽  
Lucile Allamy ◽  
Armin Schüttler ◽  
Doris Rauhut ◽  
Cécile Thibon ◽  
...  

The intrinsic quality of a wine is strongly linked with its volatile compound composition involved in the complexity of wine’s subtle flavor nuances. Those reminiscent of green pepper, herbaceous, blackcurrant, blackberry, figs or prunes are strongly linked with the maturity of the grapes. Nowadays it is well accepted that macroscopic effects of climate change modify the environmental conditions of grape growing at local scale in all the vineyards across the world. The expected effects on grape and wine production can be positive when they increase the maturity of the grapes, but when the conditions are too warm and too dry they induce opposite effects producing grapes and wines with a lower intrinsic quality. These effects were perceived in young wines but also in older wines kept several years in bottle.In this article, we provide some examples of effects of climate change and growing conditions on grapevine and wine quality expressed as flavors and antioxidant composition. We also report some results associated with the incidence of grape growing conditions on white and red wine aging potential and on the composition of old wines.Finally, we discuss the opportunities for vine growers and winemakers to manage the quality of their grapes and wines in this climate change context.


2020 ◽  
Author(s):  
Wenyao Zhu ◽  
Frank Benkwitz ◽  
Paul Kilmartin

<div>In this paper, we report on the application of the static headspace-gas chromatography-ion mobility spectrometry (SHS-GC-IMS) instrument in the field of wine aroma analysis and its potential in constructing a prediction model for the quality gradings of wines. The easy-to-operate, cost effective SHS-GC-IMS instrument was innovatively used for a non-targeted search for volatile compounds in Sauvignon Blanc wine, with the identification of volatiles seldom before reported. The wine aroma profile acquired by the instrument was organically and innovatively combined with advanced classification models, inspired by the computer science community, to produce high classification accuracy in terms of wine quality gradings. Useful insights were also extracted by using advanced interpretation methods on complex models to learn the important volatiles correlated with wine quality grading.</div>


OENO One ◽  
2020 ◽  
Vol 54 (4) ◽  
Author(s):  
Cornelis Van Leeuwen ◽  
Jean-Christophe Barbe ◽  
Philippe Darriet ◽  
Olivier Geffroy ◽  
Eric Gomès ◽  
...  

Terroir is about the link between wine and its origin. It has long been understood by sensory evaluation that the taste of wine from a given variety can be related to its origins. Specific organoleptic characteristics of wine are influenced by environmental factors such as soil and climate. By deconstructing the effect of measurable soil and climate parameters on grape and wine aroma compounds, the terroir effect on wine typicity can be better understood. Climate influences on vine development and grape ripening are mainly associated with temperature, radiation and rainfall, while soil influences are primarily associated with water availability and nitrogen supply. Significant advances have been made over recent years in understanding wine aromas and their molecular basis and influences of climate and soil on a wide range of molecules responsible for wine aroma expression. This article aims to review these recent research advances to obtain a more comprehensive understanding of how terroir influences wine typicity. The effect of terroir on wine quality and typicity is sometimes considered intangible and difficult to explain on a scientific basis. By combining agronomic, analytical and sensory approaches, however, this review shows that the terroir effect is mediated by measurable factors that can easily be monitored in the vineyard. Assessment of the results compiled by this review allows the suggestion that terroir expression at specific sites might be maximized by choosing appropriate plant material in relation to soil and climate, by acting on manageable parameters like vine water and nitrogen status, or by implementing canopy management to modify microclimate in the bunch zone.


Sign in / Sign up

Export Citation Format

Share Document