scholarly journals Middle Ear Prosthesis with Bactericidal Efficacy—In Vitro Investigation

Molecules ◽  
2017 ◽  
Vol 22 (10) ◽  
pp. 1681 ◽  
Author(s):  
Magdalena Ziąbka ◽  
Michał Dziadek ◽  
Elżbieta Menaszek ◽  
Rafał Banasiuk ◽  
Aleksandra Królicka
Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 79 ◽  
Author(s):  
Magdalena Ziąbka ◽  
Michał Dziadek ◽  
Aleksandra Królicka

Polymers modified with bioactive nanoparticles are a promising solution for patients who need a tissue replacement. Modern implants, thanks to bioactive and bactericidal functions, facilitate the healing and regeneration process of the replaced tissue. The aim of this study was to assess whether silver nanoparticles (AgNPs) could support antibacterial function without cytotoxic effect and deterioration of biostability. This article describes biological and physiochemical aspects concerning a new polymeric middle ear implant (Otoimplant) enriched with silver nanoparticles. This kind of prosthesis is a promising implant for the reconstruction of ossicles in ossiculoplasty. We found that incorporation of silver nanoparticles into a polymeric matrix resulted in bactericidal efficacy against Gram-positive and Gram-negative bacteria, both resistant to antibiotics and basic strains. Our prostheses do not show cytotoxic effect and are a suitable biomaterial platform for effective culture of Saos2 and NHOst osteoblastic cells. The in vitro incubation of the samples in distilled water revealed that surface parameters, such as roughness, may slightly increase as a result of unveiling nanoparticles. However, the prolonged immersion does not change mechanical parameters. During one-year incubation, the prosthesis proved to retain stable values of Young’s modulus, tensile strength, propagation of longitudinal ultrasonic waves, pH, and conductivity.


2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
H Leske ◽  
A Baiker ◽  
C Schichor ◽  
J.C Tonn ◽  
R Goldbrunner ◽  
...  

2010 ◽  
Vol 51 (8) ◽  
pp. 4151 ◽  
Author(s):  
Henri Sueke ◽  
Stephen B. Kaye ◽  
Timothy Neal ◽  
Amanda Hall ◽  
Stephen Tuft ◽  
...  

2020 ◽  
Vol 21 (12) ◽  
pp. 2718-2728
Author(s):  
Elsayed M. Abdel Bary ◽  
Ammar N. Harmal ◽  
Mona E. Ibrahim ◽  
Moustafa A. Gouda

2021 ◽  
pp. 130866
Author(s):  
Sofia Samoili ◽  
Giulio Farinelli ◽  
José Ángel Moreno-SanSegundo ◽  
Kevin G. McGuigan ◽  
Javier Marugán ◽  
...  

2020 ◽  
Vol 1571 ◽  
pp. 012010
Author(s):  
V P Veiko ◽  
Yu Yu Karlagina ◽  
E E Egorova ◽  
E A Zernitskaya ◽  
D S Kuznetsova ◽  
...  

1988 ◽  
Vol 67 (3) ◽  
pp. 577-581 ◽  
Author(s):  
Y. Jima ◽  
T. Koulourides

This in vitro investigation studied the remineralization of experimental caries lesions in bovine enamel by use of three methods: (1) surface microhardness, (2) microradiography, and (3) abrasion biopsy for mineral density and fluoride content. The lesions were produced by a two-day exposure to 0.01 mol/L lactic acidlsodium hydroxide buffer partially saturated with 3.0 mmol/L Ca, 1.8 mmol/L P, in 1% CMC, at pH 4.0 and 37°C. The lesions were exposed to a remineralizing solution containing 3.0 mmol/L Ca, 1.8 mmol/L P, and 3 ppm F in 1% CMC at pH 7.0 and 37°C for two, six, and ten days, with solution changes every two days. The data derived from the three methods are presented in sequence from the baseline and at days two, six, and ten of the remineralizing treatment. Microhardness measurements showed hardness recoveries of 35.9, 78.9, and 87.5%, respectively. Microradiography suggested complete recovery with the ten-day remineralization. Abrasion biopsy of successive 10-μm layers to a depth of 100 μm indicated 15.2, 39.8, and 68.8% mineral density recoveries, with fluoride content of the surface layer increasing from a baseline of 300 ppm to 4600, 9000, and 9800 ppm F for the 2, 6, 10 days of remineralization, respectively. Subsequent acid-etching of thin sections from the ten-day-remineralized specimens showed that the fluoride-enriched remineralized area was more resistant to acid dissolution than was the underlying nonnal enamel.


Sign in / Sign up

Export Citation Format

Share Document