scholarly journals From Quinoxaline, Pyrido[2,3-b]pyrazine and Pyrido[3,4-b]pyrazine to Pyrazino-Fused Carbazoles and Carbolines

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2961 ◽  
Author(s):  
Frédéric Lassagne ◽  
Timothy Langlais ◽  
Elsa Caytan ◽  
Emmanuelle Limanton ◽  
Ludovic Paquin ◽  
...  

2,3-Diphenylated quinoxaline, pyrido[2,3-b]pyrazine and 8-bromopyrido[3,4-b]pyrazine were halogenated in deprotometalation-trapping reactions using mixed 2,2,6,6-tetramethyl piperidino-based lithium-zinc combinations in tetrahydrofuran. The 2,3-diphenylated 5-iodo- quinoxaline, 8-iodopyrido[2,3-b]pyrazine and 8-bromo-7-iodopyrido[3,4-b]pyrazine thus obtained were subjected to palladium-catalyzed couplings with arylboronic acids or anilines, and possible subsequent cyclizations to afford the corresponding pyrazino[2,3-a]carbazole, pyrazino[2′,3′:5,6] pyrido[4,3-b]indole and pyrazino[2′,3′:4,5]pyrido[2,3-d]indole, respectively. 8-Iodopyrido[2,3-b] pyrazine was subjected either to a copper-catalyzed C-N bond formation with azoles, or to direct substitution to introduce alkylamino, benzylamino, hydrazine and aryloxy groups at the 8 position. The 8-hydrazino product was converted into aryl hydrazones. Most of the compounds were evaluated for their biological properties (antiproliferative activity in A2058 melanoma cells and disease-relevant kinase inhibition).

Synthesis ◽  
2019 ◽  
Vol 52 (06) ◽  
pp. 893-900
Author(s):  
Hai-Long Lu ◽  
Fu-Hu Guo ◽  
Tong-Lin Wang ◽  
Xi-Cun Wang ◽  
Zheng-Jun Quan

An efficient method for carbon–carbon bond formation is described. The process employs the palladium-catalyzed and copper-mediated cross-coupling of quinoline-2-(1H)-thiones with arylboronic acids or alkynes through C–S bond cleavage without an inert atmosphere. The method provides rapid and general access to a diverse range of 2-substituted quinolines in a single step from a wide range of quinoline-2-(1H)-thiones and arylboronic acids or alkynes.


2016 ◽  
Vol 16 (9) ◽  
pp. 1172-1183 ◽  
Author(s):  
Lamia Benguedouar ◽  
Mesbah Lahouel ◽  
Sophie C. Gangloff ◽  
Anne Durlach ◽  
Florent Grange ◽  
...  

Melanoma is the more dangerous skin cancer, and metastatic melanoma still carries poor prognosis. Despite recent therapeutic advances, prolonged survival remains rare and research is still required. Propolis extracts from many countries have attracted a great deal of attention for their biological properties. We here investigated the ability of an ethanolic extract of Algerian propolis (EEP) to control melanoma tumour growth when given to mice bearing B16F1melanoma tumour either as preventive or as therapeutic treatment. EEP given after tumour occurrence increased mice survival (+30%) and reduced tumour growth (-75%). This was associated with a decrease of the Mitotic Index (-75%) and of Ki-67 (-50%) expression. When given either before or both before and after tumour occurrence, EEP reduced tumour growth but without prolonging mice life. Isolation of B16F1 melanoma cells from resected tumour showed that preventive and curative EEP treatments reduced invasiveness by 55% and 40% respectively compared to control. Galangin, one of the most abundant flavonoids in propolis, significantly reduced the number of melanoma cells in vitro and induced autophagy/apoptosis dose dependently. In conclusion, we showed that EEP reduced melanoma tumour progression/dissemination and could extend mice lifespan when used as therapeutic treatment. Then, EEP may help patients with melanoma when used as a complementary therapy to classical treatment for which autophagy is not contraindicated.


2021 ◽  
Author(s):  
K. R. Holman ◽  
A. M. Stanko ◽  
S. E. Reisman

This tutorial review highlights the use of palladium-catalyzed cascade cyclizations in natural product synthesis, focusing on cascades that construct multiple rings and form both C–C and C–X (X = O, N) bonds in a single synthetic operation.


Synthesis ◽  
2005 ◽  
Vol 2005 (17) ◽  
pp. 2881-2886 ◽  
Author(s):  
Egle M. Beccalli ◽  
Giorgio Abbiati ◽  
Gianluigi Broggini ◽  
Giuseppe Paladino ◽  
Elisabetta Rossi

Sign in / Sign up

Export Citation Format

Share Document