scholarly journals Recent Synthesis Developments of Organoboron Compounds via Metal-Free Catalytic Borylation of Alkynes and Alkenes

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 101 ◽  
Author(s):  
Yanmei Wen ◽  
Chunmei Deng ◽  
Jianying Xie ◽  
Xinhuang Kang

Diboron reagents have been traditionally regarded as “Lewis acids”, which can react with simple Lewis base to create a significant nucleophilic character in one of boryl moieties. In particular, bis(pinacolato)diboron (B2pin2) reacts with simple Lewis bases, such as N-heterocyclic carbenes (NHCs), phosphines and alkoxides. This review focuses on the application of trivalent nucleophilic boryl synthon in the selective preparation of organoboron compounds, mainly through metal-free catalytic diboration and the β-boration reactions of alkynes and alkenes.

Synthesis ◽  
2021 ◽  
Author(s):  
Heather Lam ◽  
Mark Lautens ◽  
Xavier Abel-Snape ◽  
Martin F. Köllen

Abstract(4+3)-Annulations are incredibly versatile reactions which combine a 4-atom synthon and a 3-atom synthon to form both 7-membered carbocycles as well as heterocycles. We have previously reviewed transition-metal-catalyzed (4+3)-annulations. In this review, we will cover examples involving bases, NHCs, phosphines, Lewis and Brønsted acids as well as some rare examples of boronic acid catalysis and photocatalysis. In analogy to our previous review, we exclude annulations involving cyclic dienes like furan, pyrrole, cyclohexadiene or cyclopentadiene, as Chiu, Harmata, Fernándes and others have recently published reviews encompassing such substrates. We will however discuss the recent additions (2010–2020) to the literature on (4+3)-annulations involving other types of 4-atom-synthons.1 Introduction2 Bases3 Annulations Using N-Heterocyclic Carbenes3.1 N-Heterocyclic Carbenes (NHCs)3.2 N-Heterocyclic Carbenes and Base Dual-Activation4 Phosphines5 Acids5.1 Lewis Acids5.2 Brønsted Acids6 Boronic Acid Catalysis and Photocatalysis7 Conclusion


2017 ◽  
Vol 203 ◽  
pp. 187-199 ◽  
Author(s):  
Peter C. Ho ◽  
Hilary A. Jenkins ◽  
James F. Britten ◽  
Ignacio Vargas-Baca

The supramolecular macrocycles spontaneously assembled by iso-tellurazole N-oxides are stable towards Lewis bases as strong as N-heterocyclic carbenes (NHC) but readily react with Lewis acids such as BR3 (R = Ph, F). The electron acceptor ability of the tellurium atom is greatly enhanced in the resulting O-bonded adducts, which consequently enables binding to a variety of Lewis bases that includes acetonitrile, 4-dimethylaminopyridine, 4,4′-bipyridine, triphenyl phosphine, a N-heterocyclic carbene and a second molecule of iso-tellurazole N-oxide.


2016 ◽  
Vol 52 (37) ◽  
pp. 6328-6331 ◽  
Author(s):  
Alexander Hinz ◽  
Axel Schulz ◽  
Alexander Villinger

The well-known diphosphadiazane-1,3-diyl [P(μ-NTer)]2 (Ter = 2,6-bis(2,4,6-trimethyl-phenyl)-phenyl) was treated with Lewis bases such as N-heterocyclic carbenes and Lewis acids e.g. gold(i) chloride complexes.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4399 ◽  
Author(s):  
Ibon Alkorta ◽  
José Elguero ◽  
Manuel Yáñez ◽  
Otilia Mó ◽  
M. Merced Montero-Campillo

Relativistic effects are found to be important for the estimation of NMR parameters in halogen-bonded complexes, mainly when they involve the heavier elements, iodine and astatine. A detailed study of 60 binary complexes formed between dihalogen molecules (XY with X, Y = F, Cl, Br, I and At) and four Lewis bases (NH3, H2O, PH3 and SH2) was carried out at the MP2/aug-cc-pVTZ/aug-cc-pVTZ-PP computational level to show the extent of these effects. The NMR parameters (shielding and nuclear quadrupolar coupling constants) were computed using the relativistic Hamiltonian ZORA and compared to the values obtained with a non-relativistic Hamiltonian. The results show a mixture of the importance of the relativistic corrections as both the size of the halogen atom and the proximity of this atom to the basic site of the Lewis base increase.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng-Ying Jiang ◽  
Kai-Fang Fan ◽  
Shaoyu Li ◽  
Shao-Hua Xiang ◽  
Bin Tan

AbstractAs an important platform molecule, atropisomeric QUINOL plays a crucial role in the development of chiral ligands and catalysts in asymmetric catalysis. However, efficient approaches towards QUINOL remain scarce, and the resulting high production costs greatly impede the related academic research as well as downstream industrial applications. Here we report a direct oxidative cross-coupling reaction between isoquinolines and 2-naphthols, providing a straightforward and scalable route to acquire the privileged QUINOL scaffolds in a metal-free manner. Moreover, a NHC-catalyzed kinetic resolution of QUINOL N-oxides with high selectivity factor is established to access two types of promising axially chiral Lewis base catalysts in optically pure forms. The utility of this methodology is further illustrated by facile transformations of the products into QUINAP, an iconic ligand in asymmetric catalysis.


Author(s):  
Eva Vos ◽  
Inés Corral ◽  
M. Merced Montero-Campillo ◽  
Otilia Mó ◽  
José Elguero ◽  
...  

Be4 clusters are very powerful Lewis acids leading to the total dissociation of all the bonds of the Lewis bases interacting with them. The product of the bond dissociation cascade possesses a hyper-coordinated center. Multireference methods are needed to correctly describe these complexes.


2020 ◽  
Vol 22 (48) ◽  
pp. 28423-28433
Author(s):  
Yu Wang ◽  
Chun-Guang Liu

An emerging class of compounds, bis(Lewis base)borylenium diradicals with an electron-rich boron(i) center, are potential metal-free catalysts for dinitrogen activation and reduction.


2007 ◽  
Vol 9 (19) ◽  
pp. 3801-3804 ◽  
Author(s):  
Scott E. Denmark ◽  
William R. Collins
Keyword(s):  

2005 ◽  
Vol 58 (1) ◽  
pp. 47 ◽  
Author(s):  
Graham Smith ◽  
Andy W. Hartono ◽  
Urs D. Wermuth ◽  
Peter C. Healy ◽  
Jonathan M. White ◽  
...  

The crystal structures of the proton-transfer compounds of 5-nitrosalicylic acid (5-nsa) with morpholine (morph), hexamethylenetetramine (hmt), and ethylenediamine (en) have been determined and their solid-state packing structures described. The compounds are [(morph)+(5-nsa)–] 1, [(hmt)+(5-nsa)–·H2O] 2, and [(en)2+2(5-nsa)–·H2O] 3. In all compounds, protonation of the hetero-nitrogen of the Lewis base occurs. With 1, the 5-nsa anions and the morpholine cations lie, respectively, in or across crystallographic mirror planes and are linked within the planes by hydrogen-bonding interactions through the aminium group and the carboxylic and phenolic oxygens of the anionic 5-nsa species giving a two-dimensional sheet polymer. Compound 2 is an unusual structure with the planar 5-nsa anions lying within pseudo mirror planes and cyclically linked by duplex water bridges through a single carboxylate oxygen into centrosymmetric dimers. The hmt cation molecules are disordered across the pseudo mirror and are strongly linked by N+–H···O hydrogen bonds only to the water molecules with peripheral weak hmt C–H···O hydrogen bonds extending the dimer within and between the dimer planes. Compound 3 is a network polymer comprised of the 5-nsa anions, the en dianions, and the water molecule in an extensive hydrogen-bonded structure.


2002 ◽  
Vol 124 (45) ◽  
pp. 13405-13407 ◽  
Author(s):  
Scott E. Denmark ◽  
Thomas Wynn ◽  
Gregory L. Beutner

Sign in / Sign up

Export Citation Format

Share Document