scholarly journals HMPA-Catalyzed Transfer Hydrogenation of 3-Carbonyl Pyridines and Other N-Heteroarenes with Trichlorosilane

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 401 ◽  
Author(s):  
Yun Fu ◽  
Jian Sun

A method for the HMPA (hexamethylphosphoric triamide)-catalyzed metal-free transfer hydrogenation of pyridines has been developed. The functional group tolerance of the existing reaction conditions provides easy access to various piperidines with ester or ketone groups at the C-3 site. The suitability of this method for the reduction of other N-heteroarenes has also been demonstrated. Thirty-three examples of different substrates have been reduced to designed products with 45–96% yields.

Synlett ◽  
2021 ◽  
Vol 32 (04) ◽  
pp. 378-382
Author(s):  
Yue-Ming Jiang ◽  
Jie Liu ◽  
Qiang Fu ◽  
Yu-Ming Yu ◽  
Da-Gang Yu

AbstractPhosphonylation of alkenes is important for the generation of valuable organophosphines. However, redox-neutral difunctionalization of alkenes with readily available H-P(O) compounds remains underdeveloped. Herein, we report the first visible-light-driven redox-neutral phosphonoalkylation of alkenes. A variety of organophosphorus-containing three-membered carbocyclic scaffolds are synthesized from alkene-bearing alkyl sulfonates with H-P(O) compounds. The transition-metal-free protocol displays good functional group tolerance, broad substrate scope, high yields, and mild reaction conditions.


Synthesis ◽  
2019 ◽  
Vol 52 (03) ◽  
pp. 424-432 ◽  
Author(s):  
Yan Luo ◽  
Chun-Hua Chen ◽  
Jin-Qi Zhang ◽  
Cui Liang ◽  
Dong-Liang Mo

Spirofluorenyl-1,2,4-oxadiazinan-5-ones are prepared in good to excellent yields through metal-free [3+3] cycloaddition of N-vinyl fluorenone nitrones and aza-oxyallyl cations under mild reaction conditions. Detailed studies reveal that N-vinyl fluorenone nitrones show greater reactivity in [3+3] cycloadditions with aza-oxyallyl cations compared to N-alkyl/aryl fluorenone nitrones. The spirofluorenyl-1,2,4-oxadiazinan-5-ones are easily prepared on gram scale. The present method features mild reaction conditions, broad substrate scope, good functional group tolerance and efficient [3+3] cycloadditions of 9-fluorenone nitrones.


2016 ◽  
Vol 52 (58) ◽  
pp. 9125-9128 ◽  
Author(s):  
Kai Chen ◽  
Pei He ◽  
Shuai Zhang ◽  
Pengfei Li

An efficient transition-metal-free photochemical method featuring excellent functional group tolerance, mild reaction conditions and short reaction times has been discovered and developed for the synthesis of (hetero)aryl trimethylstannanes from (hetero)aryl halides.


2020 ◽  
Author(s):  
José Tiago Menezes Correia ◽  
Gustavo Piva da Silva ◽  
Camila Menezes Kisukuri ◽  
Elias André ◽  
Bruno Pires ◽  
...  

A metal- and catalyst-free photoinduced radical cascade hydroalkylation of 1,7-enynes has been disclosed. The process is triggered by a SET event involving a photoexcited electron-donor-aceptor complex between NHPI ester and Hantzsch ester, which decomposes to afford a tertiary radical that is readily trapped by the enyne. <a>The method provides an operationally simple, robust and step-economical approach to the construction of diversely functionalized dihydroquinolinones bearing quaternary-centers. A sequential one-pot hydroalkylation-isomerization approach is also allowed giving access to a family of quinolinones. A wide substrate scope and high functional group tolerance was observed in both approaches</a>.


2020 ◽  
Vol 24 ◽  
Author(s):  
Bubun Banerjee ◽  
Gurpreet Kaur ◽  
Navdeep Kaur

: Metal-free organocatalysts are becoming an important tool for the sustainable developments of various bioactive heterocycles. On the other hand, during last two decades, calix[n]arenes have been gaining considerable attention due to their wide range of applicability in the field of supramolecular chemistry. Recently, sulfonic acid functionalized calix[n] arenes are being employed as an efficient alternative catalyst for the synthesis of various bioactive scaffolds. In this review we have summarized the catalytic efficiency of p-sulfonic acid calix[n]arenes for the synthesis of diverse biologically promising scaffolds under various reaction conditions. There is no such review available in the literature showing the catalytic applicability of p-sulfonic acid calix[n]arenes. Therefore, we strongly believe that this review will surely attract those researchers who are interested about this fascinating organocatalyst.


Author(s):  
Jie Jack Li ◽  
Chris Limberakis ◽  
Derek A. Pflum

Searching for reaction in organic synthesis has been made much easier in the current age of computer databases. However, the dilemma now is which procedure one selects among the ocean of choices. Especially for novices in the laboratory, it becomes a daunting task to decide what reaction conditions to experiment with first in order to have the best chance of success. This collection intends to serve as an "older and wiser lab-mate" one could have by compiling many of the most commonly used experimental procedures in organic synthesis. With chapters that cover such topics as functional group manipulations, oxidation, reduction, and carbon-carbon bond formation, Modern Organic Synthesis in the Laboratory will be useful for both graduate students and professors in organic chemistry and medicinal chemists in the pharmaceutical and agrochemical industries.


Synthesis ◽  
2020 ◽  
Vol 52 (22) ◽  
pp. 3466-3472
Author(s):  
Yunkui Liu ◽  
Bingwei Zhou ◽  
Qiao Li ◽  
Hongwei Jin

We herein describe a Ni-catalyzed multicomponent coupling reaction of alkyl halides, isocyanides, and H2O to access alkyl amides. Bench-stable NiCl2(dppp) is competent to initiate this transformation under mild reaction conditions, thus allowing easy operation and adding practical value. Substrate scope studies revealed a broad functional group tolerance and generality of primary and secondary alkyl halides in this protocol. A plausible catalytic cycle via a SET process is proposed based on preliminary experiments and previous literature.


Synthesis ◽  
2021 ◽  
Author(s):  
Hongji Li ◽  
Wenjie Zhang ◽  
Xueyan Liu ◽  
Zhenfeng Tian

AbstractWe herein report a new nitrogen-directed Rh(III)-catalyzed C(sp2)–H bond functionalization of N-nitrosoanilines and azoxybenzenes with maleimides as a coupling partner, in which the olefination/alkylation process can be finely controlled at room temperature by variation of the reaction conditions. This method shows excellent functional group tolerance, and presents a mild access to the resulting olefination/alkylation products in moderate to good yields.


Synthesis ◽  
2020 ◽  
Author(s):  
Peter Ehlers ◽  
Peter Langer ◽  
Marian Blanco Ponce ◽  
Silvio Parpart ◽  
Alexander Villinger ◽  
...  

AbstractA concise and modular synthesis of pyrrolo[1,2-a][1,6]- and [1,8]naphthyridines by a one-pot two-step reaction consisting of electrophilic acylation followed by an alkyne-carbonyl-metathesis reaction as the final cyclization step is reported. This developed synthetic methodology allows the facile synthesis of these heterocyclic core structures in mainly high overall yields under metal-free conditions. Reaction conditions are carefully optimized and display a novel supplement to access these tricyclic heterocyclic compounds.


2021 ◽  
Author(s):  
Shi-Ping Wu ◽  
Dong-Kai Wang ◽  
Qing-Qing Kang ◽  
Guo-Ping Ge ◽  
Hongxing Zheng ◽  
...  

A novel sulfonyl radical triggered selective iodosulfonylation and bicyclizations of 1,6-dienes has been described for the first time. High selectivity and efficiency, mild reaction conditions, excellent functional group compatibility, and...


Sign in / Sign up

Export Citation Format

Share Document