bioactive scaffolds
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 63)

H-INDEX

24
(FIVE YEARS 6)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 276
Author(s):  
Marina C. Posso ◽  
Fernanda C. Domingues ◽  
Susana Ferreira ◽  
Samuel Silvestre

The molecular hybridization approach has been used to develop compounds with improved efficacy by combining two or more pharmacophores of bioactive scaffolds. In this context, hybridization of various relevant pharmacophores with phenothiazine derivatives has resulted in pertinent compounds with diverse biological activities, interacting with specific or multiple targets. In fact, the development of new drugs or drug candidates based on phenothiazine system has been a promising approach due to the diverse activities associated with this tricyclic system, traditionally present in compounds with antipsychotic, antihistaminic and antimuscarinic effects. Actually, the pharmacological actions of phenothiazine hybrids include promising antibacterial, antifungal, anticancer, anti-inflammatory, antimalarial, analgesic and multi-drug resistance reversal properties. The present review summarizes the progress in the development of phenothiazine hybrids and their biological activity.


2022 ◽  
Vol 2 ◽  
pp. S3-S18
Author(s):  
R. Ramos-Zúñiga ◽  
I. Segura-Duran ◽  
R.E. González-Castañeda ◽  
J.A. González Rios

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 274
Author(s):  
Negar Bakhtiary ◽  
Chaozong Liu ◽  
Farnaz Ghorbani

nowadays, a prevalent joint disease affecting both cartilage and subchondral bone is osteoarthritis. Osteochondral tissue, a complex tissue unit, exhibited limited self-renewal potential. Furthermore, its gradient properties, including mechanical property, bio-compositions, and cellular behaviors, present a challenge in repairing and regenerating damaged osteochondral tissues. Here, tissue engineering and translational medicine development using bioprinting technology provided a promising strategy for osteochondral tissue repair. In this regard, personalized stratified scaffolds, which play an influential role in osteochondral regeneration, can provide potential treatment options in early-stage osteoarthritis to delay or avoid the use of joint replacements. Accordingly, bioactive scaffolds with possible integration with surrounding tissue and controlling inflammatory responses have promising future tissue engineering perspectives. This minireview focuses on introducing biologically active inks for bioprinting the hierarchical scaffolds, containing growth factors and bioactive materials for 3D printing of regenerative osteochondral substitutes.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7515
Author(s):  
Yasmine Mendes Pupo ◽  
Lidiane Maria Boldrini Leite ◽  
Alexandra Cristina Senegaglia ◽  
Liziane Antunes ◽  
Jessica Mendes Nadal ◽  
...  

In this study, the preparation and characterization of three hydroxyapatite-based bioactive scaffolds, including hydroxyapatite microspheres (HAps), amoxicillin–hydroxyapatite composite (Amx–HAp), and collagen–hydroxyapatite composite (Col–HAp) were performed. In addition, their behavior in human dental pulp mesenchymal stem cell (hDPSC) culture was investigated. HAps were synthesized through the following methods: microwave hydrothermal, hydrothermal reactor, and precipitation, respectively. hDPSCs were obtained from samples of third molars and characterized by immunophenotypic analysis. Cells were cultured on scaffolds with osteogenic differentiation medium and maintained for 21 days. Cytotoxicity analysis and migration assay of hDPSCs were evaluated. After 21 days of induction, no differences in genes expression were observed. hDPSCs highly expressed the collagen IA and the osteonectin at the mRNA. The cytotoxicity assay using hDPSCs demonstrated that the Col–HAp group presented non-viable cells statistically lower than the control group (p = 0.03). In the migration assay, after 24 h HAps revealed the same migration behavior for hDPSCs observed compared to the positive control. Col–HAp also provided a statistically significant higher migration of hDPSCs than HAps (p = 0.02). Migration results after 48 h for HAps was intermediate from those achieved by the control groups. There was no statistical difference between the positive control and Col–HAp. Specifically, this study demonstrated that hydroxyapatite-based bioactive scaffolds, especially Col-Hap, enhanced the dynamic parameters of cell viability and cell migration capacities for hDPSCs, resulting in suitable adhesion, proliferation, and differentiation of this osteogenic lineage. These data presented are of high clinical importance and hold promise for application in therapeutic areas, because Col–HAp can be used in ridge preservation, minor bone augmentation, and periodontal regeneration. The development of novel hydroxyapatite-based bioactive scaffolds with clinical safety for bone formation from hDPSCs is an important yet challenging task both in biomaterials and cell biology.


2021 ◽  
Vol 25 ◽  
pp. 101230
Author(s):  
Mohammad Mirkhalaf ◽  
James Goldsmith ◽  
Jiongyu Ren ◽  
Aiken Dao ◽  
Peter Newman ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1472
Author(s):  
Davood Kharaghani ◽  
Eben Bashir Kurniwan ◽  
Muhammad Qamar Khan ◽  
Yuji Yoshiko

Scaffold-based bone tissue engineering has been introduced as an alternative treatment option for bone grafting due to limitations in the allograft. Not only physical conditions but also biological conditions such as gene expression significantly impact bone regeneration. Scaffolds in composition with bioactive molecules such as miRNA mimics provide a platform to enhance migration, proliferation, and differentiation of osteoprogenitor cells for bone regeneration. Among scaffolds, fibrous structures showed significant advantages in promoting osteogenic differentiation and bone regeneration via delivering bioactive molecules over the past decade. Here, we reviewed the bone and bone fracture healing considerations for the impact of miRNAs on bone regeneration. We also examined the methods used to improve miRNA mimics uptake by cells, the fabrication of fibrous scaffolds, and the effective delivery of miRNA mimics using fibrous scaffold and their processes for bone development. Finally, we offer our view on the principal challenges of miRNA mimics delivery by nanofibers for bone tissue engineering.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Junyan Ma ◽  
Hong Zhan ◽  
Wen Li ◽  
Liqi Zhang ◽  
Feng Yun ◽  
...  

AbstractIntrauterine adhesion (IUA) is a common gynaecological disease that develops from infection or trauma. IUA disease may seriously affect the physical and mental health of women of childbearing age, which may lead to symptoms such as hypomenorrhea or infertility. Presently, hysteroscopic transcervical resection of adhesion (TCRA) is the principal therapy for IUAs, although its function in preventing the recurrence of adhesion and preserving fertility is limited. Pharmaceuticals such as hormones and vasoactive agents and the placement of nondegradable stents are the most common postoperative adjuvant therapy methods. However, the repair of injured endometrium is relatively restricted due to the different anatomical structures of the endometrium. Recently, the treatment outcome of IUAs has improved with the advancement of hysteroscopic techniques. In particular, the application of bioactive scaffolds combined with tissue engineering technology has proven to have high therapeutic potential or endometrial repair in IUA treatment. Herein, this review has summarized past therapeutic strategies, including postoperative adjuvant therapy, cell or therapeutic molecular delivery therapy methods and bioactive scaffold-based tissue engineering methods. Therefore, this review presented the recent therapeutic strategies for repairing endometrium treatment and pointed out the issues of clinical concern to provide alternative methods for the management of IUAs.


Science ◽  
2021 ◽  
Vol 374 (6569) ◽  
pp. 848-856 ◽  
Author(s):  
Z. Álvarez ◽  
A. N. Kolberg-Edelbrock ◽  
I. R. Sasselli ◽  
J. A. Ortega ◽  
R. Qiu ◽  
...  

Author(s):  
Athanasia Saranti ◽  
Andreas Tiron Stathopoulos ◽  
Ligeri Papaioannou ◽  
Christina Gioti ◽  
Anna Ioannou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document