scholarly journals Integration of Data-Dependent Acquisition (DDA) and Data-Independent High-Definition MSE (HDMSE) for the Comprehensive Profiling and Characterization of Multicomponents from Panax japonicus by UHPLC/IM-QTOF-MS

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2708 ◽  
Author(s):  
Chunxia Zhang ◽  
Tiantian Zuo ◽  
Xiaoyan Wang ◽  
Hongda Wang ◽  
Ying Hu ◽  
...  

The complexity of herbal matrix necessitates the development of powerful analytical strategies to enable comprehensive multicomponent characterization. In this work, targeting the multicomponents from Panax japonicus C.A. Meyer, both data dependent acquisition (DDA) and data-independent high-definition MSE (HDMSE) in the negative electrospray ionization mode were used to extend the coverage of untargeted metabolites characterization by ultra-high-performance liquid chromatography (UHPLC) coupled to a VionTM IM-QTOF (ion-mobility/quadrupole time-of-flight) high-resolution mass spectrometer. Efficient chromatographic separation was achieved by using a BEH Shield RP18 column. Optimized mass-dependent ramp collision energy of DDA enabled more balanced MS/MS fragmentation for mono- to penta-glycosidic ginsenosides. An in-house ginsenoside database containing 504 known ginsenosides and 60 reference compounds was established and incorporated into UNIFITM, by which efficient and automated peak annotation was accomplished. By streamlined data processing workflows, we could identify or tentatively characterize 178 saponins from P. japonicus, of which 75 may have not been isolated from the Panax genus. Amongst them, 168 ginsenosides were characterized based on the DDA data, while 10 ones were newly identified from the HDMSE data, which indicated their complementary role. Conclusively, the in-depth deconvolution and characterization of multicomponents from P. japonicus were achieved, and the approaches we developed can be an example for comprehensive chemical basis elucidation of traditional Chinese medicine (TCM).

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3431 ◽  
Author(s):  
Tiantian Zuo ◽  
Yuexin Qian ◽  
Chunxia Zhang ◽  
Yuxi Wei ◽  
Xiaoyan Wang ◽  
...  

The state of the art ion mobility quadrupole time of flight (IM-QTOF) mass spectrometer coupled with ultra-high performance liquid chromatography (UHPLC) can offer four-dimensional information supporting the comprehensive multicomponent characterization of traditional Chinese medicine (TCM). Compound Xueshuantong Capsule (CXC) is a four-component Chinese patent medicine prescribed to treat ophthalmic disease and angina. However, research systematically elucidating its chemical composition is not available. An approach was established by integrating reversed-phase UHPLC separation, IM-QTOF-MS operating in both the negative and positive electrospray ionization modes, and a “Component Knockout” strategy. An in-house ginsenoside library and the incorporated TCM library of UNIFITM drove automated peak annotation. With the aid of 85 reference compounds, we could separate and characterize 230 components from CXC, including 155 ginsenosides, six astragalosides, 16 phenolic acids, 16 tanshinones, 13 flavonoids, six iridoids, ten phenylpropanoid, and eight others. Major components of CXC were from the monarch drug, Notoginseng Radix et Rhizoma. This study first clarifies the chemical complexity of CXC and the results obtained can assist to unveil the bioactive components and improve its quality control.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Yao Lu ◽  
Guo-Sheng Li ◽  
Yong-Chao Lu ◽  
Xing Fan ◽  
Xian-Yong Wei

Elucidation of chemical composition of biooil is essentially important to evaluate the process of lignocellulosic biomass (LCBM) conversion and its upgrading and suggest proper value-added utilization like producing fuel and feedstock for fine chemicals. Although the main components of LCBM are cellulose, hemicelluloses, and lignin, the chemicals derived from LCBM differ significantly due to the various feedstock and methods used for the decomposition. Biooil, produced from pyrolysis of LCBM, contains hundreds of organic chemicals with various classes. This review covers the methodologies used for the componential analysis of biooil, including pretreatments and instrumental analysis techniques. The use of chromatographic and spectrometric methods was highlighted, covering the conventional techniques such as gas chromatography, high performance liquid chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and mass spectrometry. The combination of preseparation methods and instrumental technologies is a robust pathway for the detailed componential characterization of biooil. The organic species in biooils can be classified into alkanes, alkenes, alkynes, benzene-ring containing hydrocarbons, ethers, alcohols, phenols, aldehydes, ketones, esters, carboxylic acids, and other heteroatomic organic compounds. The recent development of high resolution mass spectrometry and multidimensional hyphenated chromatographic and spectrometric techniques has considerably elucidated the composition of biooils.


1984 ◽  
Vol 51 (01) ◽  
pp. 016-021 ◽  
Author(s):  
S Birken ◽  
G Agosto ◽  
B Lahiri ◽  
R Canfield

SummaryIn order to investigate the early release of NH2-terminal plasmic fragments from the Bβ chain of fibrinogen, substantial quantities of Bβ 1-42 and Bβ 1-21 are required as immunogens, as radioimmunoassay standards and for infusion into human volunteers to determine the half-lives of these peptides. Towards this end methods that employ selective proteolytic cleavage of these fragments from fibrinogen have been developed. Both the N-DSK fragment, produced by CNBr cleavage of fibrinogen, and Bβ 1-118 were employed as substrates for plasmin with the finding of higher yields from N-DSK. Bβ 1-42 and Bβ 1-21 were purified by gel filtration and ion-exchange chromatography on SP-Sephadex using volatile buffers. When the purified preparation of Bβ 1-42 was chromatographed on reverse-phase high performance liquid chromatography, two peaks of identical amino acid composition were separated, presumably due either to pyroglutamate or to amide differences.


1992 ◽  
Vol 57 (10) ◽  
pp. 2151-2156 ◽  
Author(s):  
Peter Chabreček ◽  
Ladislav Šoltés ◽  
Hynek Hradec ◽  
Jiří Filip ◽  
Eduard Orviský

Two methods for the preparation of high molecular weight [3H]hyaluronic acid were investigated. In the first one, hydrogen atoms in the molecule were replaced by tritium. This isotopic substitution was performed in aqueous solution using Pd/CaCO3 as the catalyst. In the second method, the high molecular weight hyaluronic acid was alkylated with [3H]methyl bromide in liquid ammonia at a temperature of -33.5 °C. High-performance gel permeation chromatographic separation method was used for the isolation and characterization of the high molecular weight [3H]hyaluronic acid. Molecular weight parameters for the labelled biopolymers were Mw = 128 kDa, Mw/Mn = 1.88 (first method) and Mw = 268 kDa, Mw/Mn = 1.55 (second method). The high molecular weight [3H]hyaluronic acid having Mw = 268 kDa was degraded further by specific hyaluronidase. Products of the enzymatic depolymerization were observed to be identical for both, labelled and cold biopolymer. This finding indicates that the described labelling procedure using [3H]methyl bromide does not induce any major structural rearrangements in the molecule.


Sign in / Sign up

Export Citation Format

Share Document