scholarly journals The Antiproliferative Activity of Oxypeucedanin via Induction of G2/M Phase Cell Cycle Arrest and p53-Dependent MDM2/p21 Expression in Human Hepatoma Cells

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 501
Author(s):  
So Hyun Park ◽  
Ji-Young Hong ◽  
Hyen Joo Park ◽  
Sang Kook Lee

Oxypeucedanin (OPD), a furocoumarin compound from Angelica dahurica (Umbelliferae), exhibits potential antiproliferative activities in human cancer cells. However, the underlying molecular mechanisms of OPD as an anticancer agent in human hepatocellular cancer cells have not been fully elucidated. Therefore, the present study investigated the antiproliferative effect of OPD in SK-Hep-1 human hepatoma cells. OPD effectively inhibited the growth of SK-Hep-1 cells. Flow cytometric analysis revealed that OPD was able to induce G2/M phase cell cycle arrest in cells. The G2/M phase cell cycle arrest by OPD was associated with the downregulation of the checkpoint proteins cyclin B1, cyclin E, cdc2, and cdc25c, and the up-regulation of p-chk1 (Ser345) expression. The growth-inhibitory activity of OPD against hepatoma cells was found to be p53-dependent. The p53-expressing cells (SK-Hep-1 and HepG2) were sensitive, but p53-null cells (Hep3B) were insensitive to the antiproliferative activity of OPD. OPD also activated the expression of p53, and thus leading to the induction of MDM2 and p21, which indicates that the antiproliferative activity of OPD is in part correlated with the modulation of p53 in cancer cells. In addition, the combination of OPD with gemcitabine showed synergistic growth-inhibitory activity in SK-Hep-1 cells. These findings suggest that the anti-proliferative activity of OPD may be highly associated with the induction of G2/M phase cell cycle arrest and upregulation of the p53/MDM2/p21 axis in SK-HEP-1 hepatoma cells.

Molecules ◽  
2017 ◽  
Vol 22 (3) ◽  
pp. 472 ◽  
Author(s):  
Jing-Ru Weng ◽  
Li-Yuan Bai ◽  
Wei-Yu Lin ◽  
Chang-Fang Chiu ◽  
Yu-Chang Chen ◽  
...  

2015 ◽  
Vol 10 (2) ◽  
pp. 279 ◽  
Author(s):  
Zan-Ying Wang ◽  
Wen-Qiong Liu ◽  
Si’e Wang ◽  
Zeng-Tao Wei

<p>Endometrial cancer is one of the most prevalent gynaecological malignancies where, currently available therapeutic options remain limited. Recently phytochemicals are exploited for their efficiency in cancer therapy. The present study investigates the anti-proliferative effect of fisetin, a flavonoid on human endometrial cancer cells (KLE and Hec1 A). Fisetin (20-100 µM) effectively reduced the viability of Hec1 A and KLE cells and potentially altered the cell population at G2/M stage. Expression levels of the cell cycle proteins (cyclin B1, p-Cdc2, p-Cdc25C, p-Chk1, Chk2, p-ATM, cyclin B1, H2AX, p21 and p27) were analyzed. Fisetin suppressed cyclin B1 expression and caused inactiva-tion of Cdc25C and Cdc2 by increasing their phosphorylation levels and further activated ATM, Chk1 and Chk2. Increased levels of p21 and p27 were observed as well. These results suggest that fisetin induced G2/M cell cycle arrest via inactivating Cdc25c and Cdc2 through activation of ATM, Chk1 and Chk2.</p><p> </p><p> </p>


2019 ◽  
Vol 20 (9) ◽  
pp. 2105 ◽  
Author(s):  
Kuang-Chen Hung ◽  
Shyang-Guang Wang ◽  
Meng-Liang Lin ◽  
Shih-Shun Chen

Citrate is a key intermediate of the tricarboxylic acid cycle and acts as an allosteric signal to regulate the production of cellular ATP. An elevated cytosolic citrate concentration inhibits growth in several types of human cancer cells; however, the underlying mechanism by which citrate induces the growth arrest of cancer cells remains unclear. The results of this study showed that treatment of human pharyngeal squamous carcinoma (PSC) cells with a growth-suppressive concentration of citrate caused cell cycle arrest at the G2/M phase. A coimmunoprecipitation study demonstrated that citrate-induced cell cycle arrest in the G2/M phase was associated with stabilizing the formation of cyclin B1–phospho (p)-cyclin-dependent kinase 1 (CDK1) (Thr 161) complexes. The citrate-induced increased levels of cyclin B1 and G2/M phase arrest were suppressed by the caspase-3 inhibitor Ac-DEVD-CMK and caspase-3 cleavage of mutant p21 (D112N). Ectopic expression of the constitutively active form of protein kinase B (Akt1) could overcome the induction of p21 cleavage, cyclin B1–p-CDK1 (Thr 161) complexes, and G2/M phase arrest by citrate. p85α–phosphatase and tensin homolog deleted from chromosome 10 (PTEN) complex-mediated inactivation of Akt was required for citrate-induced G2/M phase cell cycle arrest because PTEN short hairpin RNA or a PTEN inhibitor (SF1670) blocked the suppression of Akt Ser 473 phosphorylation and the induction of cyclin B1–p-CDK1 (Thr 161) complexes and G2/M phase arrest by citrate. In conclusion, citrate induces G2/M phase arrest in PSC cells by inducing the formation of p85α–PTEN complexes to attenuate Akt-mediated signaling, thereby causing the formation of cyclin B1–p-CDK1 (Thr 161) complexes.


2016 ◽  
Vol 415 (1-2) ◽  
pp. 145-155 ◽  
Author(s):  
Ning Kang ◽  
Jun-feng Jian ◽  
Shi-jie Cao ◽  
Qiang Zhang ◽  
Yi-wei Mao ◽  
...  

2022 ◽  
Author(s):  
Selvaraj Shyamsivappan ◽  
Raju Vivek ◽  
Thangaraj Suresh ◽  
Palanivel Naveen ◽  
Kaviyarasu Adhigaman ◽  
...  

A progression of new N-(3'-acetyl-8-nitro-2,3-dihydro-1H,3'H-spiro[quinoline-4,2'-[1,3,4]thiadiazol]-5'-yl) acetamide derivatives were synthesized from potent 8-nitro quinoline-thiosemicarbazones. The synthesized compounds were characterized by different spectroscopic studies and single X-ray crystallographic studies. The compounds were...


2015 ◽  
Vol 117 (5) ◽  
pp. 1262-1272 ◽  
Author(s):  
Nadia Mustapha ◽  
Aline Pinon ◽  
Youness Limami ◽  
Alain Simon ◽  
Kamel Ghedira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document