scholarly journals PNA-Based MicroRNA Detection Methodologies

Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1296 ◽  
Author(s):  
Enrico Cadoni ◽  
Alex Manicardi ◽  
Annemieke Madder

MicroRNAs (miRNAs or miRs) are small noncoding RNAs involved in the fine regulation of post-transcriptional processes in the cell. The physiological levels of these short (20–22-mer) oligonucleotides are important for the homeostasis of the organism, and therefore dysregulation can lead to the onset of cancer and other pathologies. Their importance as biomarkers is constantly growing and, in this context, detection methods based on the hybridization to peptide nucleic acids (PNAs) are gaining their place in the spotlight. After a brief overview of their biogenesis, this review will discuss the significance of targeting miR, providing a wide range of PNA-based approaches to detect them at biologically significant concentrations, based on electrochemical, fluorescence and colorimetric assays.

2013 ◽  
Vol 4 (4) ◽  
pp. 367-380 ◽  
Author(s):  
Jesús García-López ◽  
Miguel A. Brieño-Enríquez ◽  
Jesús del Mazo

AbstractMicroRNAs (miRNAs) are cell-endogenous small noncoding RNAs that, through RNA interference, are involved in the posttranscriptional regulation of mRNAs. The biogenesis and function of miRNAs entail multiple elements with different alternative pathways. These confer a high versatility of regulation and a high variability to generate different miRNAs and hence possess a broad potential to regulate gene expression. Here we review the different mechanisms, both canonical and noncanonical, that generate miRNAs in animals. The ‘miRNome’ panorama enhances our knowledge regarding the fine regulation of gene expression and provides new insights concerning normal, as opposed to pathological, cell differentiation and development.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Mario L. Arrieta-Ortiz ◽  
Christoph Hafemeister ◽  
Bentley Shuster ◽  
Nitin S. Baliga ◽  
Richard Bonneau ◽  
...  

ABSTRACT Small noncoding RNAs (sRNAs) are key regulators of bacterial gene expression. Through complementary base pairing, sRNAs affect mRNA stability and translation efficiency. Here, we describe a network inference approach designed to identify sRNA-mediated regulation of transcript levels. We use existing transcriptional data sets and prior knowledge to infer sRNA regulons using our network inference tool, the Inferelator. This approach produces genome-wide gene regulatory networks that include contributions by both transcription factors and sRNAs. We show the benefits of estimating and incorporating sRNA activities into network inference pipelines using available experimental data. We also demonstrate how these estimated sRNA regulatory activities can be mined to identify the experimental conditions where sRNAs are most active. We uncover 45 novel experimentally supported sRNA-mRNA interactions in Escherichia coli, outperforming previous network-based efforts. Additionally, our pipeline complements sequence-based sRNA-mRNA interaction prediction methods by adding a data-driven filtering step. Finally, we show the general applicability of our approach by identifying 24 novel, experimentally supported, sRNA-mRNA interactions in Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis. Overall, our strategy generates novel insights into the functional context of sRNA regulation in multiple bacterial species. IMPORTANCE Individual bacterial genomes can have dozens of small noncoding RNAs with largely unexplored regulatory functions. Although bacterial sRNAs influence a wide range of biological processes, including antibiotic resistance and pathogenicity, our current understanding of sRNA-mediated regulation is far from complete. Most of the available information is restricted to a few well-studied bacterial species; and even in those species, only partial sets of sRNA targets have been characterized in detail. To close this information gap, we developed a computational strategy that takes advantage of available transcriptional data and knowledge about validated and putative sRNA-mRNA interactions for inferring expanded sRNA regulons. Our approach facilitates the identification of experimentally supported novel interactions while filtering out false-positive results. Due to its data-driven nature, our method prioritizes biologically relevant interactions among lists of candidate sRNA-target pairs predicted in silico from sequence analysis or derived from sRNA-mRNA binding experiments.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


Sign in / Sign up

Export Citation Format

Share Document