scholarly journals Production and Semi-Automated Processing of 89Zr Using a Commercially Available TRASIS MiniAiO Module

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2626
Author(s):  
Vijay Gaja ◽  
Jacqueline Cawthray ◽  
Clarence R. Geyer ◽  
Humphrey Fonge

The increased interest in 89Zr-labelled immunoPET imaging probes for use in preclinical and clinical studies has led to a rising demand for the isotope. The highly penetrating 511 and 909 keV photons emitted by 89Zr deliver an undesirably high radiation dose, which makes it difficult to produce large amounts manually. Additionally, there is a growing demand for Good Manufacturing Practices (GMP)-grade radionuclides for clinical applications. In this study, we have adopted the commercially available TRASIS mini AllinOne (miniAiO) automated synthesis unit to achieve efficient and reproducible batches of 89Zr. This automated module is used for the target dissolution and separation of 89Zr from the yttrium target material. The 89Zr is eluted with a very small volume of oxalic acid (1.5 mL) directly over the sterile filter into the final vial. Using this sophisticated automated purification method, we obtained satisfactory amount of 89Zr in high radionuclidic and radiochemical purities in excess of 99.99%. The specific activity of three production batches were calculated and was found to be in the range of 1351–2323 MBq/µmol. ICP-MS analysis of final solutions showed impurity levels always below 1 ppm.

Author(s):  
Ferrari Colin ◽  
Resongles Eléonore ◽  
Freydier Rémi ◽  
Casiot Corinne

Thiol-functionalized silica powder allowed single-step purification of antimony for exploring stable Sb isotope signatures in the environment.


2018 ◽  
Vol 48 ◽  
pp. 1860103 ◽  
Author(s):  
A. Andrighetto ◽  
F. Borgna ◽  
M. Ballan ◽  
S. Corradetti ◽  
E. Vettorato ◽  
...  

The ISOLPHARM project explores the feasibility of exploiting an innovative technology to produce extremely high specific activity beta-emitting radionuclides as radiopharmaceutical precursors. This technique is expected to produce radiopharmaceuticals that are virtually mainly impossible to obtain in standard production facilities, at lower cost and with less environmental impact than traditional techniques. The groundbreaking ISOLPHARM method investigated in this project has been granted an international patent (INFN). As a component of the SPES (Selective Production of Exotic Species) project at the Istituto Nazionale di Fisica Nucleare–Laboratori Nazionali di Legnaro (INFN–LNL), a new facility will produce radioactive ion beams of neutron-rich nuclei with high purity and a mass range of 80–160 amu. The radioactive isotopes will result from nuclear reactions induced by accelerating 40 MeV protons in a cyclotron to collide on a target of UC[Formula: see text]. The uranium in the target material will be [Formula: see text]U, yielding radioactive isotopes that belong to elements with an atomic number between 28 and 57. Isotope separation on line (ISOL) is adopted in the ISOLPHARM project to obtain pure isobaric beams for radiopharmaceutical applications, with no isotopic contaminations in the beam or subsequent trapping substrate. Isobaric contaminations may potentially affect radiochemical and radionuclide purity, but proper methods to separate chemically different elements can be developed.


Author(s):  
Indra Saptiama ◽  
Herlina Herlina ◽  
Sriyono Sriyono ◽  
E. Sarmini ◽  
Abidin Abidin ◽  
...  

PEMBUATAN RADIONUKLIDA MOLIBDENUM-99 (99Mo) HASIL AKTIVASI NEUTRON DARI MOLIBDENUM ALAM UNTUK MEMPEROLEH TEKNESIUM-99m (99mTc). Pembatasan penggunaan uranium sebagai target untuk produksi 99mTc menyebabkan rumah sakit di Indonesia  kesulitan mendapatkan pasokan 99mTc. Saat ini 99mTc diperoleh dari 99Mo hasil fisi (pembelahan uranium).  Pembuatan radionuklida 99Mo dari aktivasi neutron  molibdenum alam (MoO3) di teras reaktor G.A Siwabessy digunakan sebagai metode alternatif untuk memperoleh 99mTc. Tujuan penelitian ini adalah untuk melakukan pembuatan radionuklida 99Mo dari aktivasi neutron molibdenum alam untuk memperoleh 99mTc. Serbuk MoO3 alam sebanyak 5 gram dikemas dalam ampul kuarsa dan dimasukkan ke dalam inner capsul selanjutnya dikemas menggunakan outer capsul sebagai bahan target. Bahan target diiradiasi di reaktor G.A Siwabessy selama 100 jam. Hasil perhitungan diperoleh aktivitas  99Mo sebesar 65 % dari nilai maksimum yang dapat diperoleh. MoO3 paska iradiasi dilarutkan dengan NaOH 4 M sehingga diperoleh larutan natrium molibdat (Na2MoO4). Radionuklida 99Mo dan 99mTc diukur menggunakan spektrometer gamma. Radionuklida 99Mo terdeteksi dalam produk larutan  Na2MoO4 dengan  aktivitas jenis 99Mo yang diperoleh sebesar 0,81 Ci 99Mo/g Mo.  Radionuklida anak luruh 99mTc dipisahkan dari radionuklida induk 99Mo menggunakan kolom pemisah yang berisi material berbasis zirkonium (MBZ) sebagai penyerap 99Mo. Radionuklida 99mTc hasil pemisahan diperoleh dalam bentuk natrium pertehnetat (Na99mTcO4).dengan recovery yang masih rendah yaitu sekitar 52 hingga 71 %.Kata kunci: Molibdenum, teknesium, radionuklida, pemisahan, iradiasi. PRODUCTION OF ACTIVATED  NEUTRON MOLYBDENUM-99 (99Mo) RADIONUCLIDE FROM NATURAL MOLYBDENUM TO OBTAIN TECHNETIUM-99m (99mTc).  Uranium usage restriction causes the hospitals in indonesia difficult to obtain the suply of  99mTc. At Present, 99mTc is obtanied from molybdenum as a uranium fission product. Production of 99Mo radionuclide resulted from neutron activated natural molybdenum (MoO3) in G.A Siwabessy reactor could be used  as a alternatif method for producing 99mTc. The aim of this research is synthesize of   99Mo radionuclide from neutron activated natural molybdenum  (MoO3) to obtain 99mTc. The five grams of  MoO3 powder was packed in a quartz ampule and inserted into inner capsule then also inserted into outer capsule as a target material. It was iradiated in G.A Siwabessy reactor for 100hours. Based on theoritical calculation, about 65 % of maximum 99Mo activity could be recovered. After Irradiation,  MoO3 was dissolved by NaOH 4 M solution so it was natrium molybdate (Na2MoO4) solution. 99Mo and 99mTc radionuclide were analyzed using gamma spectrometer. 99Mo radionuclide was detected on Na2MoO4 solution as product that had specific activity of 0.81 Ci 99Mo/ g Mo. 99mTc as daughter radionuclide was separated from 99Mo as parent radionuclide using separated column containing zirconium based material (ZBM) as 99Mo adsobent. 99mTc radionuclide has been succesfully separated using ZBM column although recovery of 99mTc  was quite low in which approximately 52 to 71 %. The 99mTc radionuclide was recovered in the form of sodium pertechnetate (NaTcO4) solution.Keywords: Molybdenum, technetium, radionuclide, separation, irradiation.


Author(s):  
Colin Ferrari ◽  
Eléonore Resongles ◽  
Rémi Freydier ◽  
Corinne Casiot

Correction for ‘A single-step purification method for the precise determination of the antimony isotopic composition of environmental, geological and biological samples by HG-MC-ICP-MS’ by Colin Ferrari et al., J. Anal. At. Spectrom., 2021, 36, 776–785, DOI: "https://doi.org/10.1039/D0JA00452A">10.1039/D0JA00452A.


2014 ◽  
Vol 384 ◽  
pp. 149-167 ◽  
Author(s):  
Mauricio Ibanez-Mejia ◽  
George E. Gehrels ◽  
Joaquin Ruiz ◽  
Jeffrey D. Vervoort ◽  
Michael P. Eddy ◽  
...  

2020 ◽  
Author(s):  
Manuel Hernandez Cordoba ◽  
Ignacio Lopez-Garcia ◽  
Juan Jose Marín-Hernández ◽  
Maria Jose Muñoz-Sandoval ◽  
Carmen Perez-Sirvent

<p>The speciation of chromium in waters and leachates obtained from soils and sediments has aroused interest in the last years. The element may be present in two oxidation degrees that have quite different toxicity. While chromium (III) is even essential for human beings due to its role in the metabolism of glucose and lipids, Cr(VI) is toxic due to its oxidant properties. The concentration of chromium in waters is usually of a few micrograms per liter, and the difficulty of carrying out the measurement at such low levels is further increased due to the distribution of the total element in the two mentioned forms. The technique commonly used nowadays for the purpose is inductively coupled plasma mass spectrometry (ICP-MS), a powerful analytical tool, but expensive both in acquisition and maintenance. Speciation, in addition, requires some type of previous separation or suitable strategy since the signal obtained by ICP-MS depends on the total amount of the metal present.</p><p>Recent advances in microextraction techniques have demonstrated that the determination and speciation is also possible by using electrothermal atomization atomic absorption spectrometry (ETAAS), an analytical technique which is of lesser cost than ICP-MS and is present in most laboratories worldwide. This communication summarizes some recent studies carried out in our laboratory based on the use of dispersive solid-phase microextraction to concentrate chromium. The small volume of liquid extract finally obtained can be injected into the electrothermal atomizer, and a very sensitive chromium determination is achieved. The extreme sensitivity in this way obtained is the consequence of combining the efficient preconcentration step with the sensitivity inherent to ETAAS measurement. Selectivity is also guaranteed by the characteristics of ETAAS. Speciation can be carried out by means of simple previous redox treatments without the need for a chromatographic separation. Three procedures are compared, one of them using graphene oxide as the active micro-solid phase, other based in the use of cellulose, an inexpensive reagent. Both procedures require a centrifugation step to separate the micro-solid phase from the supernatant. The third procedure uses freshly prepared ferrite particles and avoids the centrifugation step since the magnetic characteristics of the solid material permit an easy separation of phases with an external magnet. In all cases, chromium is measured after desorption from the micro-solid phase by a small volume of a suitable reagent. The limits of detection are close to 0.01 micrograms/L. The reliability of the three procedures is checked by using several reference samples with a certified chromium content. Data for the speciation of the metal are also given, a point that may be of practical interest for those involved in risk assessment or toxicity studies, since the dealers of the reference materials only provide the total chromium content.</p>


2019 ◽  
Vol 9 (21) ◽  
pp. 4584 ◽  
Author(s):  
Caridi ◽  
Pappaterra ◽  
Belmusto ◽  
Messina ◽  
Belvedere ◽  
...  

: Wine is an alcoholic drink, largely used to accompany food, with a key role in the protective effects on cardiovascular diseases. This study was developed to investigate radioisotopes and heavy metal content of twenty red, rose and white Italian wines, belonging to controlled origin denomination (DOC) geographic areas of the Calabria region, south of Italy. High Purity Germanium (HPGe) Gamma Spectrometry was employed to evaluate anthropogenic (137Cs) and natural (40K) radionuclides specific activity. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to assess any possible heavy metals contamination by a comparison between Cu, Zn, Pb, B, As and Cd concentrations with the limits set by the Italian Legislation. Calculated annual effective doses due to the ingestion of investigated samples are under allowable levels (1 mSv/year), thus excluding the risk of ionizing radiation effects on humans. Regarding to the metals concentration, experimental results show that they are lower than the contamination threshold values, thus excluding their presence as pollutants.


2013 ◽  
Vol 28 (4) ◽  
pp. 606 ◽  
Author(s):  
Wei Gangjian ◽  
Wei Jingxian ◽  
Liu Ying ◽  
Ke Ting ◽  
Ren Zhongyuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document