scholarly journals PEMBUATAN RADIONUKLIDA MOLIBDENUM-99 (99Mo) HASIL AKTIVASI NEUTRON DARI MOLIBDENUM ALAM UNTUK MEMPEROLEH TEKNESIUM-99m (99mTc)

Author(s):  
Indra Saptiama ◽  
Herlina Herlina ◽  
Sriyono Sriyono ◽  
E. Sarmini ◽  
Abidin Abidin ◽  
...  

PEMBUATAN RADIONUKLIDA MOLIBDENUM-99 (99Mo) HASIL AKTIVASI NEUTRON DARI MOLIBDENUM ALAM UNTUK MEMPEROLEH TEKNESIUM-99m (99mTc). Pembatasan penggunaan uranium sebagai target untuk produksi 99mTc menyebabkan rumah sakit di Indonesia  kesulitan mendapatkan pasokan 99mTc. Saat ini 99mTc diperoleh dari 99Mo hasil fisi (pembelahan uranium).  Pembuatan radionuklida 99Mo dari aktivasi neutron  molibdenum alam (MoO3) di teras reaktor G.A Siwabessy digunakan sebagai metode alternatif untuk memperoleh 99mTc. Tujuan penelitian ini adalah untuk melakukan pembuatan radionuklida 99Mo dari aktivasi neutron molibdenum alam untuk memperoleh 99mTc. Serbuk MoO3 alam sebanyak 5 gram dikemas dalam ampul kuarsa dan dimasukkan ke dalam inner capsul selanjutnya dikemas menggunakan outer capsul sebagai bahan target. Bahan target diiradiasi di reaktor G.A Siwabessy selama 100 jam. Hasil perhitungan diperoleh aktivitas  99Mo sebesar 65 % dari nilai maksimum yang dapat diperoleh. MoO3 paska iradiasi dilarutkan dengan NaOH 4 M sehingga diperoleh larutan natrium molibdat (Na2MoO4). Radionuklida 99Mo dan 99mTc diukur menggunakan spektrometer gamma. Radionuklida 99Mo terdeteksi dalam produk larutan  Na2MoO4 dengan  aktivitas jenis 99Mo yang diperoleh sebesar 0,81 Ci 99Mo/g Mo.  Radionuklida anak luruh 99mTc dipisahkan dari radionuklida induk 99Mo menggunakan kolom pemisah yang berisi material berbasis zirkonium (MBZ) sebagai penyerap 99Mo. Radionuklida 99mTc hasil pemisahan diperoleh dalam bentuk natrium pertehnetat (Na99mTcO4).dengan recovery yang masih rendah yaitu sekitar 52 hingga 71 %.Kata kunci: Molibdenum, teknesium, radionuklida, pemisahan, iradiasi. PRODUCTION OF ACTIVATED  NEUTRON MOLYBDENUM-99 (99Mo) RADIONUCLIDE FROM NATURAL MOLYBDENUM TO OBTAIN TECHNETIUM-99m (99mTc).  Uranium usage restriction causes the hospitals in indonesia difficult to obtain the suply of  99mTc. At Present, 99mTc is obtanied from molybdenum as a uranium fission product. Production of 99Mo radionuclide resulted from neutron activated natural molybdenum (MoO3) in G.A Siwabessy reactor could be used  as a alternatif method for producing 99mTc. The aim of this research is synthesize of   99Mo radionuclide from neutron activated natural molybdenum  (MoO3) to obtain 99mTc. The five grams of  MoO3 powder was packed in a quartz ampule and inserted into inner capsule then also inserted into outer capsule as a target material. It was iradiated in G.A Siwabessy reactor for 100hours. Based on theoritical calculation, about 65 % of maximum 99Mo activity could be recovered. After Irradiation,  MoO3 was dissolved by NaOH 4 M solution so it was natrium molybdate (Na2MoO4) solution. 99Mo and 99mTc radionuclide were analyzed using gamma spectrometer. 99Mo radionuclide was detected on Na2MoO4 solution as product that had specific activity of 0.81 Ci 99Mo/ g Mo. 99mTc as daughter radionuclide was separated from 99Mo as parent radionuclide using separated column containing zirconium based material (ZBM) as 99Mo adsobent. 99mTc radionuclide has been succesfully separated using ZBM column although recovery of 99mTc  was quite low in which approximately 52 to 71 %. The 99mTc radionuclide was recovered in the form of sodium pertechnetate (NaTcO4) solution.Keywords: Molybdenum, technetium, radionuclide, separation, irradiation.

ANRI ◽  
2021 ◽  
Vol 0 (1) ◽  
pp. 31-44
Author(s):  
Aleksey Vasil'ev ◽  
Aleksey Ekidin ◽  
Mariya Pyshkina ◽  
Georgiy Malinovskiy ◽  
Aleksandra Onischenko ◽  
...  

A method for non-destructive monitoring of the content of natural radionuclides in building materials has been developed. Spectrum measurements of gamma radiation are carried out with a pre-calibrated field gamma spectrometer. The calculation of the average specific activity of natural radionuclides in building materials is carried out by comparing the calculated flux density of unscattered gamma quanta normalized to the specific activity, and the experimentally measured count rates in the photopeak. calculated for the geometry of the room under study and the location of the detector. Application of the developed method makes it possible to estimate the average activity of natural radionuclides in building materials without destruction.


2018 ◽  
Vol 48 ◽  
pp. 1860103 ◽  
Author(s):  
A. Andrighetto ◽  
F. Borgna ◽  
M. Ballan ◽  
S. Corradetti ◽  
E. Vettorato ◽  
...  

The ISOLPHARM project explores the feasibility of exploiting an innovative technology to produce extremely high specific activity beta-emitting radionuclides as radiopharmaceutical precursors. This technique is expected to produce radiopharmaceuticals that are virtually mainly impossible to obtain in standard production facilities, at lower cost and with less environmental impact than traditional techniques. The groundbreaking ISOLPHARM method investigated in this project has been granted an international patent (INFN). As a component of the SPES (Selective Production of Exotic Species) project at the Istituto Nazionale di Fisica Nucleare–Laboratori Nazionali di Legnaro (INFN–LNL), a new facility will produce radioactive ion beams of neutron-rich nuclei with high purity and a mass range of 80–160 amu. The radioactive isotopes will result from nuclear reactions induced by accelerating 40 MeV protons in a cyclotron to collide on a target of UC[Formula: see text]. The uranium in the target material will be [Formula: see text]U, yielding radioactive isotopes that belong to elements with an atomic number between 28 and 57. Isotope separation on line (ISOL) is adopted in the ISOLPHARM project to obtain pure isobaric beams for radiopharmaceutical applications, with no isotopic contaminations in the beam or subsequent trapping substrate. Isobaric contaminations may potentially affect radiochemical and radionuclide purity, but proper methods to separate chemically different elements can be developed.


1981 ◽  
Author(s):  
F Jacks ◽  
B A Bradlow

Autoantibodies were solubilized from washed platelets by three successive freeze thaw cycles followed by sonication for 15 seconds at maximum intensity (MSE Mk 2). The disrupted platelets were centrifuged at 30,000g for 20 minutes and the supernatant was heated at 56°C for 30 minutes followed by centrifugation at 3,000g for 5 minutes. An aliquot of the supernatant was diluted with 0,01M phosphate buffered saline pH 7.4 to give a final concentration equivalent to about 5 × 106 platelets/ml. Fifty microlitres of the diluted extract was adsorbed onto the wells of a microtitre plate by incubation at room temperature for two hours. The wells were then washed three times with 0,01M phosphate buffered saline pH 7.4 containing 0,05% Tween (Tween-PBS) and the adsorbed antiplatelet IgG reacted with 50μl of an iodine-125 labelled affinity isolated goat antihuman (heavy chain specific) IgG, specific activity ≃ 50μCi/ μg (California Antibodies) for one hour at room temperature followed by three washes with Tween-PBS. A standard curve was constructed and run in parallel, in the dose range 0,l-100ng using purified human IgG (Miles Laboratories). The separated wells were counted in an automatic gamma spectrometer (Packard 3003) and the results calculated on a desk-top computer (Hewlet-Packard 9800) using a Rodbart weighted Logit-Log transformation (f = 0,996). A relatively poor arithmetic correlation was found between whole blood platelet counts and measured platelet bound IgG (r = -0,42), whereas a better correlation was obtained using a log-log plot (r = - 0,84).The results in ng/106 platelets were - Known ATP 133,2 ± 154, other autoimmune diseases with thrombocytopenia 212,0 ± 202, non-immune thrombocytopenia 18,6 ± 4,8, normal healthy controls 11,4 ± 3.7


Al-Kimia ◽  
2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Miftakul Munir ◽  
Enny Lestari ◽  
Hambali Hambali ◽  
Kadarisman Kadarisman ◽  
Marlina Marlina

Technetium-99m (99mTc), a daughter radionuclide of molybdenum-99 (99Mo), is the most widely used radiodiagnostic agent due to its ideal characteristics. The separation of this radionuclide from 99Mo is commonly performed using alumina. However, a new production method of this radionuclide, which employs a low specific activity 99Mo, makes alumina no longer suitable as separation material. This study aims to develop novel alumina using a facile solid-state reaction for 99Mo/99mTc generator system. The SS-alumina was synthesized from aluminium nitrate nonahydrate and ammonium bicarbonate without solvent. The resulted SS-alumina was then analyzed by FTIR and BET method. 99Mo adsorption and 99mTc releasing study on a series of pH were also performed. FTIR study revealed that the resulting material was Al2O3 with a surface area of 237.65 m2/g. The adsorption capacity, 99mTc yield, 99Mo breakthrough, and alumina breakthrough were 76.06 mg Mo/g alumina, 80.31%, 56.5 µCi/mCi 99mTc, and less than 5 mg/mL, respectively. The elution profile shows a high activity of 99mTc in 2nd and 3rd fraction. It is concluded that the SS-alumina shows good performance as adsorbent material for separation of a 99Mo/99mTc and further work is now underway.


1996 ◽  
Vol 465 ◽  
Author(s):  
Peter Schubert-Bischoff ◽  
Werner Lutze ◽  
Boris E. Burakov

ABSTRACTOn April 25, 1986, the nuclear reactor Unit 4 (RBMK) at Chernobyl, Ukraine, exploded. Besides molecular species, the fallout contained particles of relatively high specific activity (hot particles) with a wide range of chemical compositions. The composition of a hot particle bears information about its genesis. Particle sizes ranged from a few to 100s of micrometers. Data on a hot particle, found in Berlin, Germany, is presented and discussed in context with earlier measurements on other particles to understand their genesis. The chemical composition was determined by electron probe micro analysis. Our particles are either reactor fuel (one) or fission product alloys (nine). The alloys were formed during normal reactor operation. Strongly varying concentrations of Fe and Ni suggest that at least some of our particles reacted with molten structural material of the reactor. The particles were mobilized by fuel oxidation or fuel dust generation during the accident. The fission product composition can only be explained if we assume that the alloys remained in the solid state in the course of the accident. Some particles may have been ejected during the explosion, others later while the reactor was burning. Activities (103Ru and 106Ru, originally up to 160,000 Bq) of our ten year old particles were re-measured but were no longer detectable. No long-lived γ-emitters were found. The 99Tc activity was calculated and found to only lBq. The γ -spectrum of the fuel particle still shows 137Cs (1 Bq) and 60Co (<1 Bq).


2014 ◽  
Vol 65 ◽  
pp. 314-319 ◽  
Author(s):  
G. Srinivasan ◽  
R.S. Keshavamurthy ◽  
D.V. Subramanian ◽  
Adish Haridas ◽  
C.P. Reddy ◽  
...  

2021 ◽  
Vol 14 (2) ◽  
pp. 66-71
Author(s):  
S. V. Muminov ◽  
B. B. Barotov ◽  
U. M. Mirsaidov ◽  
S. R. Murodov ◽  
J. A. Salomov ◽  
...  

The content of cesium-137 in the soil cover of the central and southern parts of Tajikistan was studied. The study area of the regions of the republic is about 45,000 km2. 92 soil samples from the Central and Southern parts of the republic were collected from cultivated and uncultivated fields to a depth of 25 cm from the ground surface. Each sample at the sampling point was cleared of stones, roots and other inclusions. The sample was dried to an air-dry state, crushed and sieved through a sieve with a hole diameter of 2 mm. When measuring the samples, we used a standard 1 L Marinelli beaker. Measurements of the specific activity of cesium-137 in soil samples were carried out on a gamma spectrometer based on highly pure germanium. The maximum content of cesium-137 was observed in soil sample No. 1 of the Kamarob area of the Rasht district, which specific activity in the sample is 148 Bq / kg. The minimum specific activity of cesium-137 is observed in soil samples from the Tajikabad district. The dependence of the concentration of cesium-137 on the topography in the region under study has been established. In some of the investigated samples, the cesium-137 isotope was not detected (sample no. 2 from the Ayvaj area of the Shahritus district and sample no. 4 from the Farkhor district). The dynamics of the distribution of cesium-137 on the soils of uncultivated fields and soils of cultivated fields of the Khatlon region of Tajikistan has been studied. It was found that the content of the isotope of cesium-137 in the treated fields differs from the untreated ones. It has been determined that in the soils of cultivated lands, the content of cesium-137 is concentrated at a depth of 20-25 cm. At the foot of the mountains and clay soils, a relatively high content of the isotope of cesium-137 is observed in comparison with plains and sandy soils.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
I. I. Dovhyi ◽  
N. A. Bezhin ◽  
D. A. Kremenchutskii ◽  
O. N. Kozlovskaya ◽  
A. I. Chepyzhenko ◽  
...  

Purpose. The study of submarine groundwater discharge is one of the most pressing issues of modern hydrogeology and oceanography. The purpose of the paper is to provide a comprehensive study of the submarine groundwater discharge at Cape Ayia using the hydrological, hydrochemical and radiochemical methods, and to determine the flux of submarine groundwater including the nutrients. Methods and Results. The research werecarried out during the coastal expeditions nearby Cape Ayia on March 24, 2019, and on April 22–24, 2019 during the 106th RV “Professor Vodyanitsky” cruise (April 18 – May 13, 2019). The isotopes 226Ra, 228Ra were extracted using the proprietary MnO2-based fibers. After concentration, the sorbent was squeezed to remove excess water, dried and ashed. Then the ash was placed in the Petri dishes and poured with epoxy resin. Activity of the radionuclides was measured on a low-background semiconductor γ-spectrometer with a detector of high-purity germanium (GC3020) 3 weeks after the resin casting. The activity of 226Ra was determined by the daughter radionuclide 214Pb with the energy 351.9 keV (qγ = 37.2 %), and that of 228Ra – by the daughter 228Ac (T1/2 = 6.1 h, qγ = 27.7 %) with the energy 911.6 keV. The basic elements of the main nutrient cycle were determined photocolorimetrically: mineral phosphorus – by molybdenum blue, silicon – by silicon-molybdenum complex. Nitrates (reduced to nitrites) and nitrites were determined by azo dye; ammonium – by indophenol blue also by the photocolorimetric method. Conclusions. Distribution of hydrophysical, hydrochemical and radiochemical parameters in the water area connected with the known submarine groundwater discharges was studied. The distribution of the 226Ra, 228Ra isotopes was studied for the first time. The data on salinity, specific activity of 226Ra, 228Ra and the nutrients concentration permitted to determine the flows of submarine groundwaters in the Cape Ayia area, which amounted to 8220 ± 1200 m3/day. The anthropogenic contribution to pollution of the groundwater forming the submarine sources is shown.


2019 ◽  
Vol 19 (3) ◽  
pp. 556 ◽  
Author(s):  
Muhamad Basit Febrian ◽  
Duyeh Setiawan ◽  
Hilda Hidayati

High specific activity is a necessity in the fabrication of 99Mo/99mTc radioisotope generators. Recoil reaction, or the Szilard-Chalmers effect, is a method that could be used as an alternative method for increasing specific activity in radioisotope production in light of tightening regulation of highly enriched uranium (HEU) irradiation. Phthalocyanine compounds are usually used as the target material in recoil reactions for the production of high specific radioisotope activity via the (n,γ) reaction. Molybdenum phthalocyanine (Mo-Pc) could be a promising target material in recoil reactions for producing high specific activity of 99Mo. Mo-Pc was synthesized via solid-state reaction between ammonium heptamolybdate and phthalonitrile in a reflux system at 300 °C for 3 h. This optimum condition was identified after performing several variations of temperature and time of reaction, considering FTIR spectra, the yield of product and melting point of the product. XRD measurement showed that Mo-Pc synthesized at optimum condition was free from MoO2, phthalimide and unreacted molybdenum. Mo-Pc has UV-vis properties of Q-band absorption between 600 and 750 nm when dissolved in tetrahydrofuran, dimethylformamide and trifluoroacetic acid. Splitting at absorption peak in tetrahydrofuran and dimethylformamide solution indicated that protonation had occurred. This split peak did not appear in a trifluoroacetic acid solution. In the preliminary study of irradiation of 1 g Mo-Pc at 3.5x1012 n cm–2 s–1 neutron flux, followed by dissolution in tetrahydrofuran and extraction of Mo-99 into NaOH, we obtained Mo-99 solution with a specific activity of 682.35 mCi/g Mo, this being 254.61 times higher than in the regular MoO3 target.


Sign in / Sign up

Export Citation Format

Share Document