scholarly journals Antityrosinase Activity of Combretum micranthum, Euphorbia hirta and Anacardium occidentale Plants: Ultrasound Assisted Extraction Optimization and Profiling of Associated Predominant Metabolites

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2684 ◽  
Author(s):  
Hussein Zeitoun ◽  
Zareen Khan ◽  
Kaushik Banerjee ◽  
Dominique Salameh ◽  
Roger Lteif

Tyrosinase is an important component of the enzyme polyphenol oxidase, which upon contact with the phenolic substrates forms the pigment melanin and induces undesirable food browning. The phenolic and triterpenoid compounds that naturally occur in plants are well known as tyrosinase inhibitors. Combretum micranthum (CM) leaves, Euphorbia hirta (EH) plant, and Anacardium occidentale (AO) fruits are traditionally known to have potential anti-tyrosinase activities. The aim of this study was to optimize the ultrasound-assisted extraction of secondary metabolites from these matrices, and to evaluate in tubo the antityrosinase activity of these extracts. Efforts were also taken to profile the secondary metabolites, mainly the phenolic and triterpenoid compounds, in order to understand their probable association with tyrosinase inhibition. The optimal ultrasound-assisted extraction conditions for simultaneous extraction of phenolic, and triterpenoid compounds were determined. The aqueous fraction of these extracts showed significant antityrosinase activity, with the CM leaves exhibiting the strongest inhibitory effect (IC50 of 0.58 g·L−1). The predominant metabolic compounds from these natural extracts were putatively identified by using a high-resolution quadrupole-time of flight (QToF) LC-MS instrument. The high-resolution accurate mass-based screening resulted in identification of 88 predominant metabolites, which included dihydrodaidzein-7-O-glucuronide, micromeric acid, syringic acid, morin, quercetin-3-O-(6″-malonyl-glucoside), 4-hydroxycoumarin, dihydrocaffeic acid-3-O-glucuronide, to name some, with less than 5 ppm of mass error.

2020 ◽  
Vol 16 (6) ◽  
pp. 924-936
Author(s):  
Arun Nanda ◽  
Vineet Mittal

Background: Improvement in extract quality in terms of concentration of secondary metabolites and pharmacological activity has always been the need of the hour. In the present research, the target was to extract the selected medicinal herb using the ultrasound waves and to optimize the extraction conditions for the improvement in the quality of extract with respect to furan labdane diterpene (marrubiin) concentration and antihypertensive potential. Methods: The whole plant of Marrubium vulgare Linn. was collected from the fields of Pulwama district of Jammu and Kashmir state in India and extracted by cold maceration (MVM) and ultrasound assisted extraction techniques (MVU). The response surface methodology coupled with the central composite design was employed to optimize the selected extraction parameters in UAE method. The marrubiin concentration in different extracts was determined by HPTLC. The extracts were also evaluated for the antihypertensive potential by non-invasive blood pressure monitoring (NIBPM) method. Results: The extract yield (14.2 ± 0.9%) and concentration of marrubiin (0.91 ± 0.04%) were significantly improved at the optimized UAE conditions (Ultrasound power 467 W, sonication time of 47 minutes and solvent concentration of 33 mL per g of drug) as compared to the conventional method. Furthermore, the MVU extract (200 mg/kg) along with ethanol significantly (p<0.01) prevented the rise in mean systolic blood pressure (MSBP) of animals and also the GSH was significantly (p<0.05) enhanced as compared to ethanol-treated animals. Conclusion: The elevation in MSBP and decrease in reduced glutathione concentration (GSH) by the chronic ethanol consumption were significantly altered by MVU extract as compared to MVM extract. The enhanced antihypertensive effect of selected herb may be attributed to the improved concentration of secondary metabolites (marrubiin) in MVU extract obtained at optimized conditions.


2019 ◽  
Vol 4 (2) ◽  

There is a worldwide demand for phenolic compounds (PC) because they exhibit several biological activities. This work aimed at extracting phenolic compounds from peanut meal. The methods of extraction were mainly: conventional solvent extraction (traditional methods) and ultrasound assisted extraction (recent methods) and comparing their results. Peanut meal (PM) was prepared by defatting with n-hexane, and then extracted by the two previous methods. First, the conventional solvents used were 80% methanol, ethanol, acetone, isopropanol, and distilled water. Then studied Different parameters such as meal: water ratio, also the effect of temperature and the pH on the extraction process. Second, ultrasonic assisted extractions (USAE), the parameters investigated were temperature, time and speed of sonication. Finally, all the extracts were analyzed by HPLC for their phenolic contents. Results indicated that the highest extracted PC achieved by solvents was in distilled water where 1:100, Meal: Water ratio which extracted 40 mg PC / g PM at 30& 35°C. Highest extracted PC was achieved by alkaline medium at pH 12 more than acidic and neutral medium. While (USAE) at speed 8 ultrasonication and temperature 30ᵒC, extracted 49.2mg PC /g PM. Sothe ultrasound assisted extraction exhibited great influence on the extraction of phenolic compounds from peanut meal. The ultrasonic peanut extract was examined for its antioxidant, antimicrobial and anticarcinogenic activities. The antioxidant activity of PM phenolic extract prepared by ultrasonic technique, was measured by, β-carotene, and DPPH methods, and reducing antioxidant power. Results revealed values: 84.57, 57.72 and 5960 respectively. The PM extract showed different levels of antimicrobial activity against the pathogenic bacteria used. As for the anticarcinogenic effect PM phenolic extract most effective on inhibiting colon carcinoma and lung carcinoma cell lines with IC50 = 20.7 and 20.8 µ/ml., respectively. This was followed by intestinal carcinoma and liver carcinoma cell lines with IC50= 39.6 and 40.2µ/ml.


2020 ◽  
Vol 159 ◽  
pp. 105525 ◽  
Author(s):  
Cheila B. do C. de Sousa ◽  
Gilvanda L. dos Anjos ◽  
Rafaela S.A. Nóbrega ◽  
Andréia da S. Magaton ◽  
Fabrício M. de Miranda ◽  
...  

2021 ◽  
pp. 105680
Author(s):  
Danger Tabio-García ◽  
Francisco Paraguay-Delgado ◽  
Miguel Á. Sánchez-Madrigal ◽  
Armando Quintero-Ramos ◽  
José C. Espinoza-Hicks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document