scholarly journals HFIP-Promoted Synthesis of Substituted Tetrahydrofurans by Reaction of Epoxides with Electron-Rich Alkenes

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3464
Author(s):  
Natalia Llopis ◽  
Alejandro Baeza

In the present work, the employment of fluorinated alcohols, specifically 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), as solvent and promoter of the catalyst-free synthesis of substituted tetrahydrofuranes through the addition of electron-rich alkenes to epoxydes is described. The unique properties of this fluorinated alcohol, which is very different from their non-fluorinated analogs, allows carrying out this new straightforward protocol under smooth reaction conditions affording the corresponding adducts in moderate yields in the majority of cases. Remarkably, this methodology has allowed the synthesis of new tetrahydrofuran-based spiro compounds as well as tetrahydrofurobenzofuran derivatives. The scope and limitations of the process are also discussed. Mechanistic studies were also performed pointing towards a purely ionic or a SN2-type process depending on the nucleophilicity of the alkene employed.

2020 ◽  
Vol 17 ◽  
Author(s):  
Visarapu Malathi ◽  
Pedavenkatagari Narayana Reddy ◽  
Pannala Padmaja

Abstract:: An efficient method has been developed for the synthesis of new pyrano[3,2-c] and pyrano[3,2-a]carbazole de-rivatives via a three component reaction of 4-hydroxycarbazole or 2-hydroxycarbazole, isocyanides, and dialkylacetylenedi-carboxylates. Noteworthy features of this protocol include mild reaction conditions, catalyst-free, high atom-economy and high yields.


2019 ◽  
Author(s):  
Jennifer Schomaker ◽  
Josephine Eshon ◽  
Kate A. Nicastri ◽  
Steven C. Schmid ◽  
William T. Raskopf ◽  
...  

Bicyclic aziridines undergo formal [3+3] ring expansion reactions when exposed to rhodium-bound vinyl carbenes to form complex dehydropiperidines in a highly stereocontrolled rearrangement. Mechanistic studies and DFT computations indicate the reaction proceeds through the formation of a vinyl aziridinium ylide; this reactive intermediate undergoes a concerted, asynchronous, pseudo-[1,4]- sigmatropic rearrangement to directly furnish the heterocyclic products with net retention at the new C-C bond. In combination with an asymmetric silver-catalyzed aziridination developed in our group, this method quickly delivers enantioenriched scaffolds with up to three contiguous stereocenters. The mild reaction conditions, functional group tolerance, and high stereochemical retention of this method are especially well-suited for appending piperidine motifs to natural product and complex molecules. Ultimately, our work establishes the value of underutilized aziridinium ylides as key intermediates in strategies to convert small, strained rings to larger N-heterocycles.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yujing Guo ◽  
Chao Pei ◽  
Rene M. Koenigs

AbstractNitrene transfer reactions represent one of the key reactions to rapidly construct new carbon-nitrogen bonds and typically require transition metal catalysts to control the reactivity of the pivotal nitrene intermediate. Herein, we report on the application of iminoiodinanes in amination reactions under visible light photochemical conditions. While a triplet nitrene can be accessed under catalyst-free conditions, the use of a suitable photosensitizer allows the access of a nitrene radical anion. Computational and mechanistic studies rationalize the access and reactivity of triplet nitrene and nitrene radical anion and allow the direct comparison of both amination reagents. We conclude with applications of both reagents in organic synthesis and showcase their reactivity in the reaction with olefins, which underline their markedly distinct reactivity. Both reagents can be accessed under mild reaction conditions at room temperature without the necessity to exclude moisture or air, which renders these metal-free, photochemical amination reactions highly practical.


Synthesis ◽  
2020 ◽  
Vol 52 (11) ◽  
pp. 1643-1658
Author(s):  
Sergio H. Szajnman ◽  
Juan B. Rodriguez ◽  
María N. Chao ◽  
Mauricio Cattaneo ◽  
Jonathan Sanchez Gonzalez ◽  
...  

An expedient preparation of selenium-containing hetero­cycles via an m-chloroperbenzoic acid-mediated seleno-annulation starting from selenocyanate derivatives is described. In spite of its significance, this cyclization reaction is virtually understudied not only from the point of view of its scope, but also from the mechanistic aspects associated to this remarkable transformation. In this sense, several selenocyanate and thiocyanate derivatives bearing an aromatic ring were evaluated as substrates under different reaction conditions of this interesting cyclization yielding important insights on its scope as well as relevant information on the reaction mechanism.


2018 ◽  
Vol 14 ◽  
pp. 1317-1348 ◽  
Author(s):  
Veronika Hladíková ◽  
Jiří Váňa ◽  
Jiří Hanusek

This review covers all known examples of [3 + 2]-cycloaddition between sydnones and both terminal as well as internal alkynes/cycloalkynes taken from literature since its discovery by Huisgen in 1962 up to the current date. Except enumeration of synthetic applications it also covers mechanistic studies, catalysis, effects of substituents and reaction conditions influencing reaction rate and regioselectivity.


2019 ◽  
Vol 15 ◽  
pp. 1523-1533 ◽  
Author(s):  
András György Németh ◽  
György Miklós Keserű ◽  
Péter Ábrányi-Balogh

A new multicomponent reaction has been developed between isocyanides, sulfur and alcohols or thiols under mild reaction conditions to afford O-thiocarbamates and dithiocarbamates in moderate to good yields. The one-pot reaction cascade involves the formation of an isothiocyanate intermediate, thus a catalyst-free synthesis of isothiocyanates, as valuable building blocks from isocyanides and sulfur is proposed, as well. The synthetic procedure suits the demand of a modern organic chemist, as it tolerates a wide range of functional groups, it is atom economic and easily scalable.


Synthesis ◽  
2018 ◽  
Vol 50 (24) ◽  
pp. 4897-4904 ◽  
Author(s):  
Ekaterina Stepanova ◽  
Andrey Maslivets ◽  
Svetlana Kasatkina ◽  
Maksim Dmitriev

A facile synthetic approach towards two distinct pyrrole-based heterocyclic scaffolds has been developed by the interaction of 1H-pyrrole-2,3-diones fused at the [e]-side to a 1,4-benzoxazin-2-one or quinoxalin-2(1H)-one moiety with ketones. The described interaction proceeds either as an aldol reaction or as a Michael addition/intramolecular cyclization depending on the reaction conditions. The disclosed aldol reaction proceeds with good diastereoselectivity under catalyst-free conditions when the reaction is carried out in aromatic hydrocarbons. Products of the cascade Michael addition/intramolecular cyclization reaction are predominantly formed under catalyst-free and solvent-free conditions. The proposed strategy provides facile access to pharmaceutically interesting pyrrole-based polyheterocycles.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhan Li ◽  
Ke-Feng Wang ◽  
Xin Zhao ◽  
Huihui Ti ◽  
Xu-Ge Liu ◽  
...  

Abstract Alkyl carboxylic acids as well as primary amines are ubiquitous in all facets of biological science, pharmaceutical science, chemical science and materials science. By chemical conversion to redox-active esters (RAE) and Katritzky’s N-alkylpyridinium salts, respectively, alkyl carboxylic acids and primary amines serve as ideal starting materials to forge new connections. In this work, a Mn-mediated reductive decarboxylative/deaminative functionalization of activated aliphatic acids and primary amines is disclosed. A series of C-X (X = S, Se, Te, H, P) and C-C bonds are efficiently constructed under simple and mild reaction conditions. The protocol is applicable to the late-stage modification of some structurally complex natural products or drugs. Preliminary mechanistic studies suggest the involvement of radicals in the reaction pathway.


2019 ◽  
Vol 17 (35) ◽  
pp. 8153-8165 ◽  
Author(s):  
Jitendra Gour ◽  
Srikanth Gatadi ◽  
Ravikumar Akunuri ◽  
Madhavi Venkata Yaddanapudi ◽  
Mushtaq Ahmad Nengroo ◽  
...  

A general and catalyst-free access to the fused polycyclic N-heterocycles via an intramolecular azide–alkene cascade reaction under mild reaction conditions has been developed.


Synlett ◽  
2019 ◽  
Vol 30 (15) ◽  
pp. 1805-1809
Author(s):  
Shuai Li ◽  
Xia Wang ◽  
Xin-Ge Yang ◽  
Gui-Quan Yu ◽  
Xue-Qiang Wang

A transition-metal-free etherification protocol that is capable of synthesizing deuterated ethers is described. A wide range of aryl alkyl ethers and thioethers were suitable for this transformation owing to the mild reaction conditions. Besides, a series of sterically bulky deuterated alcohols were successfully incorporated into cyano-substituted arenes. The results of mechanistic studies suggested this reaction might take place via nucleophilic aromatic substitution pathway.


Sign in / Sign up

Export Citation Format

Share Document