scholarly journals A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3486 ◽  
Author(s):  
Quang Hung Nguyen ◽  
Hai-Bang Ly ◽  
Van Quan Tran ◽  
Thuy-Anh Nguyen ◽  
Viet-Hung Phan ◽  
...  

In this study, a novel hybrid surrogate machine learning model based on a feedforward neural network (FNN) and one step secant algorithm (OSS) was developed to predict the load-bearing capacity of concrete-filled steel tube columns (CFST), whereas the OSS was used to optimize the weights and bias of the FNN for developing a hybrid model (FNN-OSS). For achieving this goal, an experimental database containing 422 instances was firstly gathered from the literature and used to develop the FNN-OSS algorithm. The input variables in the database contained the geometrical characteristics of CFST columns, and the mechanical properties of two CFST constituent materials, i.e., steel and concrete. Thereafter, the selection of the appropriate parameters of FNN-OSS was performed and evaluated by common statistical measurements, for instance, the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). In the next step, the prediction capability of the best FNN-OSS structure was evaluated in both global and local analyses, showing an excellent agreement between actual and predicted values of the load-bearing capacity. Finally, an in-depth investigation of the performance and limitations of FNN-OSS was conducted from a structural engineering point of view. The results confirmed the effectiveness of the FNN-OSS as a robust algorithm for the prediction of the CFST load-bearing capacity.

2019 ◽  
Vol 23 (6) ◽  
pp. 1074-1086 ◽  
Author(s):  
Tao Zhu ◽  
Hongjun Liang ◽  
Yiyan Lu ◽  
Weijie Li ◽  
Hong Zhang

This article investigates the behaviour of slender concrete-filled steel tube square columns strengthened by concrete-filled steel tube jacketing. The columns were realised by placing a square outer steel tube around the original slender concrete-filled steel tube column and pouring strengthening concrete into the gap between the inner and outer steel tubes. Three concrete-filled steel tube square columns and seven retrofitted columns ranging from 1200 to 2000 mm were tested to failure under axial compression. The experimental parameters included three length-to-width ( L/ B1) ratios, three width-to-thickness ( B1/ t1) ratios and three strengths of concrete jacket (C50-grade, C60-grade and C70-grade). Experimentally, the retrofitted columns failed in a similar manner to traditional slender concrete-filled steel tube columns. After strengthening, the retrofitted columns benefitted greatly from the component materials, with their load-bearing capacity and ductility notably enhanced. These enhancements were mainly brought about by sectional enlargement and good confinement of concrete. A finite element model was developed using ABAQUS to better understand the axial behaviour of the retrofitted specimens. A parametric study was conducted, with parameters including the length of the column, thickness of the outer steel tube, strength of the concrete jacket, yield strength of the outer steel tube, thickness of the inner steel tube and strength of the inner concrete. Furthermore, the finite element model was adopted to study the behaviour of rust-damaged and post-fire slender concrete-filled steel tube square columns strengthened by square concrete-filled steel tube jacketing. A modified formula was proposed to predict the load-bearing capacity of retrofitted specimens, and the numerical results agreed well with the experiments and the finite element results of undamaged, rust-damaged and post-fire specimens. It could be used as a reference for practical application.


2013 ◽  
Vol 405-408 ◽  
pp. 1041-1045 ◽  
Author(s):  
Lian Qiong Zheng ◽  
Shu Li Guo ◽  
Ji Zhong Zhou

A simplified method using an equivalent slenderness ratio was suggested to calculate load-bearing capacity of concrete-filled steel tubular laced column in this paper. The significant differences between compressive and tensile strengths of concrete-filled steel tube were considered. The comparisons between the predicted Nuc and the tested Nue showed that the predicted method gives generally good predictions of the test results.


2014 ◽  
Vol 568-570 ◽  
pp. 1662-1666
Author(s):  
Jun Wang ◽  
Yan Fa Gao

Shallow arch circular concrete filled steel tube support has a good load-bearing capacity, which is used in soft rock roadway supporting to solve the problem of supporting instability and to reduce the amount of anti-invert excavation. In this paper, concrete filled steel tube supports of Φ168 ×6 are designed according to shallow arch circular concrete filled steel tube structures and their load-displacement curves, ultimate bearing capacity and support failure mode are especially tested in experiment. This shallow arch circular concrete filled steel tube support is also applied in very soft rock roadway supporting of No. 1 mine well of Chaganzhuoer in Xilinhot, Inner Mongolia and proved to be of good supporting effect. The shallow arch circular concrete filled steel tube support is of higher load-bearing capacity and of outstanding advantages in solving extremely soft rock roadway supporting problems, as is proved in both theoretical test and application.


2020 ◽  
Vol 10 (10) ◽  
pp. 3452 ◽  
Author(s):  
Tien-Thinh Le

In this study, a surrogate Machine Learning (ML)-based model was developed, to predict the load-bearing capacity (LBC) of concrete-filled steel square hollow section (CFSS) members, considering loading eccentricity. The proposed Artificial Neural Network (ANN) model was trained and validated against experimental data using the following error measurement criteria: coefficient of determination (R2), slope of regression, root mean square error (RMSE) and mean absolute error (MAE). A parametric study was conducted to calibrate the parameters of the ANN model, including the number of neurons, activation function, cost function and training algorithm, respectively. The results showed that the ANN model can provide reliable and effective prediction of LBC (R2 = 0.975, Slope = 0.975, RMSE = 294.424 kN and MAE = 191.878 kN). Sensitivity analysis showed that the geometric parameters of the steel tube (width and thickness) and the compressive strength of concrete were the most important variables. Finally, the effect of eccentric loading on the LBC of CFSS members is presented and discussed, showing that the ANN model can assist in the creation of continuous LBC maps, within the ranges of input variables adopted in this study.


2014 ◽  
Vol 941-944 ◽  
pp. 804-808
Author(s):  
Jun Wang ◽  
Yan Fa Gao

Concrete filled steel tube Support has a good load-bearing capacity, in this paper, shallow arch circular concrete filled steel tube support was designed, two kinds supports of Φ194×8 and Φ168×6 are to experiment according to shallow arch circular steel concrete structures and their load-displacement curves, ultimate bearing capacity and support failure mode are especially tested in experiment.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yiyan Lu ◽  
Tao Zhu ◽  
Shan Li ◽  
Weijie Li ◽  
Na Li

This paper investigates the axial behavior of slender reinforced concrete (RC) columns strengthened with concrete filled steel tube (CFST) jacketing technique. It is realized by pouring self-compacting concrete (SCC) into the gap between inner original slender RC columns and outer steel tubes. Nine specimens were prepared and tested to failure under axial compression: a control specimen without strengthening and eight specimens with heights ranging between 1240 and 2140 mm strengthened with CFST jacketing. Experimental variables included four different length-to-diameter (L/D) ratios, three different diameter-to-thickness (D/t) ratios, and three different SCC strengths. The experimental results showed that the outer steel tube provided confinement to the SCC and original slender RC columns and thus effectively improved the behavior of slender RC columns. The failure mode of slender RC columns was changed from brittle failure (concrete peel-off) into ductile failure (global bending) after strengthening. And, the load-bearing capacity, material utilization, and ductility of slender RC columns were significantly enhanced. The strengthening effect of CFST jacketing decreased with the increase of L/D ratio and D/t ratio but showed little variation with higher SCC strength. An existing expression of load-bearing capacity for traditional CFST columns was extended to propose a formula for the load-bearing capacity of CFST jacketed columns, and the predictions showed good agreement with the experimental results.


2010 ◽  
Vol 163-167 ◽  
pp. 2171-2175 ◽  
Author(s):  
Jun Ping Liu ◽  
Yong Jian Liu ◽  
Jian Yang

Based on the experimental results, this paper presents the effects of concrete-filled in chord on the static behavior of rectangular hollow section (RHS) steel tubular trusses, including failure modes, load bearing capacity and structural stiffness. Failure of RHS trusses occurs at joints wether concrete-filled in chord or not, concrete-filled in chord changed the failure mode. Load bearing capacity and stiffness of joints subjected to compression load increased significantly, while it is limited to the tension joints. Concrete-filled in the compression chord tube can increase its stiffness significantly, while tension chord tube, it is not that obvious. Finally, based on the results discussed, failure modes and their formulas of calculating the load bearing capacity are discussed. Meanwhile, two methods, that is, amplified factor method and stiffness discounting method, which calculate the structural displacement when considering the joint deformation effects are presented.


2009 ◽  
Vol 15 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Artiomas Kuranovas ◽  
Douglas Goode ◽  
Audronis Kazimieras Kvedaras ◽  
Shantong Zhong

This paper represents the analysis of 1303 specimens of CFST experimental data. Test results are compared with EC4 provided method for determining the load‐bearing capacity of these composite elements. Several types of CFSTs were tested: both circular and rectangular cross‐sections with solid and hollow concrete core with axial load applied without and with moment, with sustained load and preloading. For circular cross‐section columns there is a good agreement between the test failure load and the EC4 calculation for both short and long columns with and without moment. For rectangular cross‐section columns the agreement is good except when the concrete cylinder strength was greater than 75 MPa, when many tests failed below the strength predicted by EC4. Preloading the steel tube before filling with concrete seems to have no effect on the strength. This paper also presents the stress distribution, confinement distribution and complete average longitudinal stress‐strain curves for concrete‐filled steel tubular elements. Based on the definition of the “Unified Theory”, the CFST is looked upon as an entity of a new composite material. In this paper, the research achievement of the strength and stability for centrifugal‐hollow and solid concrete filled steel tube are introduced. These behaviours relate to the hollowness ratio and the confining indexes of corresponding solid CFST. If the hollow ratio equals to 0,4–0,5 and over, the N‐ϵ relationship exists in steady descending stage. The critical stress of CFST elements stability is determined as an eccentric member with the initial eccentricity by use of finite element method. Santrauka Straipsnyje analizuojami 1303 betonšerdžių plieninių strypų bandinių eksperimentiniai duomenys. Duomenys lyginami su eurokode 4 pateiktais kompozitinių elementų laikomosios galios nustatymo metodais. Analizuojami šie betonšerdžių plieninių strypų bandinių tipai: pilnaviduriai ir tuščiaviduriai, apskrito ir stačiakampio skerspjūvio kolonos, kurių galuose veikia arba neveikia momentas, su iš anksto pridėta arba ilgalaike apkrova. Apskrito skerspjūvio kolonų laikomosios galios bandymų rezultatai atitinka skaičiavimų reikšmes, apskaičiuotas pagal eurokode 4 pateiktu metodu. Stačiakampio skerspjūvio elementų laikomosios galios reikšmių bandymo rezultatai puikiai atitinka teorines reikšmes, kai betono ritininis stipris nesiekia 75 MPa. Išankstinis elementų apkrovimas poveikio elementų laikomajai galiai beveik neturi. Taip pat nagrinėjami betonšerdžių elementų įtempių būvių pasiskirstymas, betono apspaudimo poveikis ir išilginių deformacijų ir įtempių kreivės. Pateikiama S. T. Zhong „Unifikuota teorija“, kuri nagrinėja kompozitinį elementą kaip visumą. Straipsnyje nagrinėjamos kompozitinio plieninio ir betoninio elemento stiprumo ir pastovumo sąlygos. Tokių elementų reikšmėmis. Jeigu tuštumos santykis lygus 0,4–0,5 ir daugiau, N-ε sąryšis yra kritimo stadijoje. Elgsenos stadijos keičiasi pagal tuštumos koeficientą.


2013 ◽  
Vol 20 (3) ◽  
pp. 277-284
Author(s):  
Mehrzad Mohabbi Yadollahi ◽  
Fatma Karagöl ◽  
Mehmet Akif Kaygusuz ◽  
Rıza Polat ◽  
Ramazan Demirboga

AbstractDetermining a feasible safety factor for space trusses is an important phase in structural analysis that could have economic benefits. We know there are many kinds of imperfections in structural elements, which include both material and geometric flaws. Predicting factual behavior of structures is very difficult and occasionally impossible. Elements with initial geometric imperfections in space trusses are a common phenomenon, in addition, equivalent initial geometric imperfections can be applied for modeling of residual stresses or eccentric loading effect. The number of members in the space structures is usually high as is the diversity in the kind of initial imperfection. Therefore, there is a high likelihood that models must be analyzed. The structure must be analyzed with non-linear methods, making these approaches time consuming, and potentially uneconomical. In this study, we selected 30 cases for random analysis based on Monte Carlo methods to find the bearing capacity of the space truss. We attained results from the LUSAS program LUSAS Modeller, Version 13, UK program and these were then exported as input data to the Artificial Neural Network (ANN) program. A reasonable neural network has been found of predicting another 30 cases for load bearing capacity without any analysis and only based on the neural network program. Finally, a new approach for determining the load capacity of the space trusses was extracted and we predicted the occurrence possibility of the convenience load bearing capacity in 60 cases.


2011 ◽  
Vol 368-373 ◽  
pp. 1513-1516
Author(s):  
Chuan Li Chang ◽  
Jian Xue Song

Ten construction sites are chosen as survey places, and several parameters for scaffold designing are collected, such as the wall thickness of steel tube, the weight of three kinds of couplers, the working tighten-moment on belts of couplers. Corresponding to different tighten-moment of the right angle coupler and anti-slipping tests are carried out. Reliability of 97% and wall thickness of 2.7mm should be considered in scaffold designing only about 10% of the practical used couplers comply with the National Code. The working tighten-moment of couplers should be 40 ~ 50N • m, which is up to the load bearing capacity of coupler.


Sign in / Sign up

Export Citation Format

Share Document