scholarly journals Imipramine Inhibits Migration and Invasion in Metastatic Castration-Resistant Prostate Cancer PC-3 Cells via AKT-Mediated NF-κB Signaling Pathway

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4619
Author(s):  
Eun Yeong Lim ◽  
Joon Park ◽  
Yun Tai Kim ◽  
Min Jung Kim

Imipramine (IMI) is a tricyclic synthetic antidepressant that is used to treat chronic psychiatric disorders, including depression and neuropathic pain. IMI also has inhibitory effects against various cancer types, including prostate cancer; however, the mechanism of its anticancer activity is not well understood. In the present study, we investigated the antimetastatic and anti-invasive effects of IMI in metastatic castration-resistant prostate cancer PC-3 cells, with an emphasis on the serine/threonine protein kinase AKT-mediated nuclear factor kappa B (NF-κB) signaling pathway. While IMI did not induce cell death, it attenuated PC-3 cell proliferation. According to the wound healing assay and invasion assay, migration and invasion in PC-3 cells were significantly inhibited by IMI in a dose-dependent manner. IMI significantly downregulated p-AKT protein expression but upregulated phospho-extracellular signal-regulated kinase (ERK1)/2 protein expression levels. Furthermore, IMI treatment resulted in decreased AKT-mediated downstream signaling, including p-inhibitor of κB kinase (IKK)α/β, p-inhibitor of κB (IκBα), and p-p65. Inhibited NF-κB signaling reduced the secretion of several proinflammatory cytokines and chemokine by PC-3 cells. Overall, our study explored the negative correlation between the use of antidepressants and prostate cancer progression, showing that IMI attenuated cell viability, migration, and invasion of PC-3 cells by suppressing the expression of AKT and NF-κB-related signaling proteins and secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1).

2021 ◽  
Vol 11 ◽  
Author(s):  
Lin Gao ◽  
Ru Zhao ◽  
Junmei Liu ◽  
Wenbo Zhang ◽  
Feifei Sun ◽  
...  

Castration-resistant prostate cancer (CRPC) continues to be a major clinical problem and its underlying mechanisms are still not fully understood. The epidermal growth factor receptor (EGFR) activation is an important event that regulates mitogenic signaling. EGFR signaling plays an important role in the transition from androgen dependence to castration-resistant state in prostate cancer (PCa). Kinesin family member 15 (KIF15) has been suggested to be overexpressed in multiple malignancies. Here, we demonstrate that KIF15 expression is elevated in CRPC. We show that KIF15 contributes to CRPC progression by enhancing the EGFR signaling pathway, which includes complex network intermediates such as mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. In CRPC tumors, increased expression of KIF15 is positively correlated with EGFR protein level. KIF15 binds to EGFR, and prevents EGFR proteins from degradation in a Cdc42-dependent manner. These findings highlight the key role of KIF15 in the development of CRPC and rationalize KIF15 as a potential therapeutic target.


2021 ◽  
Vol 12 (24) ◽  
pp. 7349-7357
Author(s):  
Xuanrong Chen ◽  
Yi Shao ◽  
Wanqing Wei ◽  
Haishan Shen ◽  
Yang Li ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 7 (38) ◽  
pp. 61955-61969 ◽  
Author(s):  
Jingbo Qiao ◽  
Magdalena M. Grabowska ◽  
Ingrid S. Forestier-Roman ◽  
Janni Mirosevich ◽  
Thomas C. Case ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document