scholarly journals Measurement of CeO2 Nanoparticles in Natural Waters Using a High Sensitivity, Single Particle ICP-MS

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5516
Author(s):  
Ibrahim Jreije ◽  
Agil Azimzada ◽  
Madjid Hadioui ◽  
Kevin J. Wilkinson

As the production and use of cerium oxide nanoparticles (CeO2 NPs) increases, so does the concern of the scientific community over their release into the environment. Single particle inductively coupled plasma mass spectrometry is emerging as one of the best techniques for NP detection and quantification; however, it is often limited by high size detection limits (SDL). To that end, a high sensitivity sector field ICP-MS (SF-ICP-MS) with microsecond dwell times (50 µs) was used to lower the SDL of CeO2 NPs to below 4.0 nm. Ag and Au NPs were also analyzed for reference. SF-ICP-MS was then used to detect CeO2 NPs in a Montreal rainwater at a concentration of (2.2 ± 0.1) × 108 L−1 with a mean diameter of 10.8 ± 0.2 nm; and in a St. Lawrence River water at a concentration of ((1.6 ± 0.3) × 109 L−1) with a higher mean diameter (21.9 ± 0.8 nm). SF-ICP-MS and single particle time of flight ICP-MS on Ce and La indicated that 36% of the Ce-containing NPs detected in Montreal rainwater were engineered Ce NPs.

Author(s):  
Pierre-Emmanuel Peyneau ◽  
Martin Guillon

The particle number concentration (PNC) of dilute nanoparticle dispersions can be determined by single particle inductively coupled plasma-mass spectrometry (sp-ICP-MS). Virtually equal to zero for very dilute dispersions, the difference...


The Analyst ◽  
2019 ◽  
Vol 144 (5) ◽  
pp. 1725-1730 ◽  
Author(s):  
Xiaomin Xu ◽  
Jiyun Chen ◽  
Bangrui Li ◽  
Lijuan Tang ◽  
Jianhui Jiang

Herein, a novel 16S rRNA detection platform was achieved by combining a sandwich hybridization reaction, a single-molecule magnetic capture, and single particle-inductively coupled plasma mass spectrometry amplification.


Metallomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 408-415 ◽  
Author(s):  
Joanna Kruszewska ◽  
Dominika Kulpińska ◽  
Ilona Grabowska-Jadach ◽  
Magdalena Matczuk

ICP-MS-based platform for the characterization of medicinally attractive nanomaterials processing inside human cells.


2020 ◽  
Vol 92 (17) ◽  
pp. 11664-11672
Author(s):  
Javier Jiménez-Lamana ◽  
Lucile Marigliano ◽  
Joachim Allouche ◽  
Bruno Grassl ◽  
Joanna Szpunar ◽  
...  

2020 ◽  
Vol 44 (5) ◽  
pp. 490-498
Author(s):  
Abdul Khader Karakka Kal ◽  
Zubair Perwad ◽  
Tajudheen K Karatt ◽  
Jahfar Nalakath ◽  
Michael Subhahar

Abstract Recently, an increased tendency to use various metals has been observed in the sports competition fields. Many of these metals and their organic complexes reportedly have good pharmacologic, therapeutic and performance-enhancement uses; they are banned or recommended as controlled medications in competitive sports. The objective of this research was to determine the concentration of pharmacologically relevant metals in urine samples collected from racehorses at various sport events, develop a method and assess the concentrations of above metals using inductively coupled plasma mass spectrometry (ICP-MS). Seven alkali–alkaline earth metals (lithium, sodium, potassium, magnesium, calcium, strontium and barium) and six heavy metals (chromium, cobalt, copper, zinc, arsenic and selenium) were studied in detail. To compare and confirm the concentrations of these metals, the screening was carried out on the basis of region and sex of the animal. ICP-MS provides extremely high sensitivity that enables the determination of the metals at very low concentration from complex biological matrices. From the research, it is clear that irrespective of sex and region the concentration of metal is very high in some samples, might be accidental or intentional doping to improve sporting performances. This research work is of significant importance in setting threshold values for screening metals in race day samples in order to avoid potential harmful effects on athletes and the depth of malpractices, it can bring to sports.


Sign in / Sign up

Export Citation Format

Share Document