scholarly journals Structural and Energetic Characterization of the Denatured State from the Perspectives of Peptides, the Coil Library, and Intrinsically Disordered Proteins

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 634
Author(s):  
Elisia A. Paiz ◽  
Karen A. Lewis ◽  
Steven T. Whitten

The α and polyproline II (PPII) basins are the two most populated regions of the Ramachandran map when constructed from the protein coil library, a widely used denatured state model built from the segments of irregular structure found in the Protein Data Bank. This indicates the α and PPII conformations are dominant components of the ensembles of denatured structures that exist in solution for biological proteins, an observation supported in part by structural studies of short, and thus unfolded, peptides. Although intrinsic conformational propensities have been determined experimentally for the common amino acids in short peptides, and estimated from surveys of the protein coil library, the ability of these intrinsic conformational propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs), an increasingly important class of proteins in cell function, has thus far proven elusive to establish. Recently, we demonstrated that the sequence dependence of the mean hydrodynamic size of IDPs in water and the impact of heat on the coil dimensions, provide access to both the sequence dependence and thermodynamic energies that are associated with biases for the α and PPII backbone conformations. Here, we compare results from peptide-based studies of intrinsic conformational propensities and surveys of the protein coil library to those of the sequence-based analysis of heat effects on IDP hydrodynamic size, showing that a common structural and thermodynamic description of the protein denatured state is obtained.

2018 ◽  
Vol 9 (15) ◽  
pp. 3710-3715 ◽  
Author(s):  
Erica T. Prates ◽  
Xiaoyang Guan ◽  
Yaohao Li ◽  
Xinfeng Wang ◽  
Patrick K. Chaffey ◽  
...  

Protein glycosylation is a diverse post-translational modification that serves myriad biological functions.


2021 ◽  
Vol 22 (20) ◽  
pp. 11058
Author(s):  
Ellen Rieloff ◽  
Marie Skepö

Intrinsically disordered proteins are involved in many biological processes such as signaling, regulation, and recognition. A common strategy to regulate their function is through phosphorylation, as it can induce changes in conformation, dynamics, and interactions with binding partners. Although phosphorylated intrinsically disordered proteins have received increased attention in recent years, a full understanding of the conformational and structural implications of phosphorylation has not yet been achieved. Here, we present all-atom molecular dynamics simulations of five disordered peptides originated from tau, statherin, and β-casein, in both phosphorylated and non-phosphorylated state, to compare changes in global dimensions and structural elements, in an attempt to gain more insight into the controlling factors. The changes are in qualitative agreement with experimental data, and we observe that the net charge is not enough to predict the impact of phosphorylation on the global dimensions. Instead, the distribution of phosphorylated and positively charged residues throughout the sequence has great impact due to the formation of salt bridges. In statherin, a preference for arginine–phosphoserine interaction over arginine–tyrosine accounts for a global expansion, despite a local contraction of the phosphorylated region, which implies that also non-charged residues can influence the effect of phosphorylation.


2019 ◽  
Vol 32 (4) ◽  
pp. 191-202 ◽  
Author(s):  
Megan C Cohan ◽  
Kiersten M Ruff ◽  
Rohit V Pappu

Abstract Intrinsically disordered proteins (IDPs) contribute to a multitude of functions. De novo design of IDPs should open the door to modulating functions and phenotypes controlled by these systems. Recent design efforts have focused on compositional biases and specific sequence patterns as the design features. Analysis of the impact of these designs on sequence-function relationships indicates that individual sequence/compositional parameters are insufficient for describing sequence-function relationships in IDPs. To remedy this problem, we have developed information theoretic measures for sequence–ensemble relationships (SERs) of IDPs. These measures rely on prior availability of statistically robust conformational ensembles derived from all atom simulations. We show that the measures we have developed are useful for comparing sequence-ensemble relationships even when sequence is poorly conserved. Based on our results, we propose that de novo designs of IDPs, guided by knowledge of their SERs, should provide improved insights into their sequence–ensemble–function relationships.


2020 ◽  
Vol 21 (15) ◽  
pp. 5257 ◽  
Author(s):  
Darius Vagrys ◽  
James Davidson ◽  
Ijen Chen ◽  
Roderick E. Hubbard ◽  
Ben Davis

Over the past decade intrinsically disordered proteins (IDPs) have emerged as a biologically important class of proteins, many of which are of therapeutic relevance. Here, we investigated the interactions between a model IDP system, tau K18, and nine literature compounds that have been reported as having an effect on tau in order to identify a robust IDP–ligand system for the optimization of a range of biophysical methods. We used NMR, surface plasmon resonance (SPR) and microscale thermophoresis (MST) methods to investigate the binding of these compounds to tau K18; only one showed unambiguous interaction with tau K18. Several near neighbors of this compound were synthesized and their interactions with tau K18 characterized using additional NMR methods, including 1D ligand-observed NMR, diffusion-ordered spectroscopy (DOSY) and 19F NMR. This study demonstrates that it is possible to detect and characterize IDP–ligand interactions using biophysical methods. However, care must be taken to account for possible artefacts, particularly the impact of compound solubility and where the protein has to be immobilized.


2017 ◽  
Vol 114 (31) ◽  
pp. E6342-E6351 ◽  
Author(s):  
Gustavo Fuertes ◽  
Niccolò Banterle ◽  
Kiersten M. Ruff ◽  
Aritra Chowdhury ◽  
Davide Mercadante ◽  
...  

Unfolded states of proteins and native states of intrinsically disordered proteins (IDPs) populate heterogeneous conformational ensembles in solution. The average sizes of these heterogeneous systems, quantified by the radius of gyration (RG), can be measured by small-angle X-ray scattering (SAXS). Another parameter, the mean dye-to-dye distance (RE) for proteins with fluorescently labeled termini, can be estimated using single-molecule Förster resonance energy transfer (smFRET). A number of studies have reported inconsistencies in inferences drawn from the two sets of measurements for the dimensions of unfolded proteins and IDPs in the absence of chemical denaturants. These differences are typically attributed to the influence of fluorescent labels used in smFRET and to the impact of high concentrations and averaging features of SAXS. By measuring the dimensions of a collection of labeled and unlabeled polypeptides using smFRET and SAXS, we directly assessed the contributions of dyes to the experimental values RG and RE. For chemically denatured proteins we obtain mutual consistency in our inferences based on RG and RE, whereas for IDPs under native conditions, we find substantial deviations. Using computations, we show that discrepant inferences are neither due to methodological shortcomings of specific measurements nor due to artifacts of dyes. Instead, our analysis suggests that chemical heterogeneity in heteropolymeric systems leads to a decoupling between RE and RG that is amplified in the absence of denaturants. Therefore, joint assessments of RG and RE combined with measurements of polymer shapes should provide a consistent and complete picture of the underlying ensembles.


2020 ◽  
Author(s):  
Yani Zhao ◽  
Robinson Cortes-Huerto ◽  
Kurt Kremer ◽  
Joseph F. Rudzinski

Intrinsically disordered proteins (IDPs) play an important role in an array of biological processes but present a number of fundamental challenges for computational modeling. Recently, simple polymer models have re-gained popularity for interpreting the experimental characterization of IDPs. Homopolymer theory provides a strong foundation for understanding generic features of phenomena ranging from single-chain conformational dynamics to the properties of entangled polymer melts, but is difficult to extend to the copolymer context. This challenge is magnified for proteins due to the variety of competing interactions and large deviations in side-chain properties. In this work, we apply a simple physics-based coarse-grained model for describing largely disordered conformational ensembles of peptides, based on the premise that sampling sterically-forbidden conformations can compromise the faithful description of both static and dynamical properties. The Hamiltonian of the employed model can be easily adjusted to investigate the impact of distinct interactions and sequence specificity on the randomness of the resulting conformational ensemble. In particular, starting with a bead-spring-like model and then adding more detailed interactions one by one, we construct a hierarchical set of models and perform a detailed comparison of their properties. Our analysis clarifies the role of generic attractions, electrostatics and side-chain sterics, while providing a foundation for developing efficient models for IDPs that retain an accurate description of the hierarchy of conformational dynamics, which is nontrivially influenced by interactions with surrounding proteins and solvent molecules.


Sign in / Sign up

Export Citation Format

Share Document