scholarly journals Impact of Collection Volume and DNA Extraction Method on the Detection of Biomarkers and HPV DNA in First-Void Urine

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1989
Author(s):  
Laura Téblick ◽  
Severien Van Keer ◽  
Annemie De Smet ◽  
Pierre Van Damme ◽  
Michelle Laeremans ◽  
...  

The potential of first-void (FV) urine as a non-invasive liquid biopsy for detection of human papillomavirus (HPV) DNA and other biomarkers has been increasingly recognized over the past decade. In this study, we investigated whether the volume of this initial urine stream has an impact on the analytical performance of biomarkers. In parallel, we evaluated different DNA extraction protocols and introduced an internal control in the urine preservative. Twenty-five women, diagnosed with high-risk HPV, provided three home-collected FV urine samples using three FV urine collection devices (Colli-Pee) with collector tubes that differ in volume (4, 10, 20 mL). Each collector tube was prefilled with Urine Conservation Medium spiked with phocine herpesvirus 1 (PhHV-1) DNA as internal control. Five different DNA extraction protocols were compared, followed by PCR for GAPDH and PhHV-1 (qPCR), HPV DNA, and HBB (HPV-Risk Assay), and ACTB (methylation-specific qPCR). Results showed limited effects of collection volume on human and HPV DNA endpoints. In contrast, significant variations in yield for human endpoints were observed for different DNA extraction methods (p < 0.05). Additionally, the potential of PhHV-1 as internal control to monitor FV urine collection, storage, and processing was demonstrated.

Acta Tropica ◽  
2021 ◽  
pp. 106275
Author(s):  
Verônica Cardoso Santos de Faria ◽  
Denise Utsch Gonçalves ◽  
Arthur Ribeiro Cheloni Soares ◽  
Pedro Henrique Barbosa ◽  
Juliana Wilke Saliba ◽  
...  

2003 ◽  
Vol 51 (4) ◽  
pp. 341 ◽  
Author(s):  
Maxine P. Piggott ◽  
Andrea C. Taylor

We evaluated and compared sixteen combinations of commonly used storage and extraction methods for faecal DNA from two Australian marsupial herbivores, two marsupial carnivores and an introduced carnivorous mammal. For all species the highest amplification and lowest genotyping error rates were achieved using dried faeces extracted via a surface wash followed by spin column purification. The highest error rates were seen in the two Dasyurus spp. and the lowest in Vulpes vulpes. The rates observed for each species were incorporated into computer simulations to identify the number of PCR replicates required to achieve accurate genotyping of DNA isolated via the optimised protocol. Three replicates per sample were sufficient for V. vulpes, Thylogale billardierii and Petrogale penicillata. However, further replicates may be required for marsupial carnivores, as their faeces yielded DNA that amplified substantially less often and less reliably, for all preservation and extraction methods tested, than did the other species. Although pilot studies remain vital for evaluating the feasibility of non-invasive sampling prior to undertaking any in-depth study the availability of a thoroughly tested storage and DNA extraction combination protocol known to be optimal for five different species should make that process much simpler.


2016 ◽  
Vol 52 ◽  
pp. 171-176
Author(s):  
M. Palkina ◽  
O. Metlitska

The aim of the research – adaptation, optimization and using of existing DNA extraction methods from bees’ biological material with the reagent «Chelex-100" under complex economic conditions of native laboratories, which will optimize labour costs and improve the economic performance of DNA extraction protocol. Materials and methods. In order to conduct the research the samples of honey bees’ biological material: queen pupae exuviae, larvae of drone brood, some adult bees’ bodies (head and thorax) were selected. Bowl and drone brood were obtained from the experimental bee hives of Institute of Apiculture nd. a. P. I. Prokopovich of NAAS. DNA extraction from biosamples of Apis mellifera ssp. was carried out using «Chelex-100®» ion exchange resin in different concentrations and combinations. Before setting tests for determination of quantitative and quality indexes, dilution of DNA samples of the probed object was conducted in ratio 1:40. The degree of contamination with protein and polysaccharide fractions (OD 260/230), quantitative content of DNA (OD 260/280) in the extracted tests were conducted using spectrophotometer of «Biospec – nano» at the terms of sample volume in 2 µl and length of optical way in 0,7 mm [7]. Verification of DNA samples from biological material of bees, isolated by «Chelex-100®», was conducted after cold keeping during 24 hours at 20°C using PСR with primaries to the fragment of gene of quantitative trait locus (QTL) Sting-2 of next structure [8]:  3' – CTC GAC GAG ACG ACC AAC TTG – 5’; 3' – AAC CAG AGT ATC GCG AGT GTT AC – 5’ Program of amplification: 94 °C – 5 minutes – 1 cycle; 94 °C – 1 minute, 57°C – 1 minute, 72 °C – 2 minutes – 30 cycles; elongation after 72°C during 2 minutes – 1 cycle. The division of obtained amplicons was conducted by gel electrophoresis at a low current – 7 µÀ, in 1,5 % agarose gel (Sigma ®) in TAE buffer [7]. The results. At the time of optimization of DNA isolation methods, according to existing methods of foreign experts, it was found optimal volume of ion exchange resin solution was in the proposed concentration: instead of 60 µl of solution used 120 µl of «Chelex-100®», time of incubation was also amended from 30 minutes to 180 minutes [9]. The use of the author's combination of method «Chelex-100®» with lysis enzymes, proteinase K and detergents (1M dithiothreitol), as time of incubation was also amended, which was reduced to 180 minutes instead of the proposed 12 hours [10]. Changes in quality characteristics of obtained DNA in samples after reduction in incubation time were not found. Conclusions. The most economical method of DNA isolation from bees’ biological material is 20% solution of «Chelex-100» ion exchange resin with the duration of the incubation period of 180 minutes. It should also be noted that the best results can be obtained from exuviae, selected immediately after the queen’s exit from bowl, that reduces the likelihood of DNA molecules destruction under the influence of nucleases activation, but not later than 12 hours from release using the technology of isolated obtain of queens.


2018 ◽  
Vol 1 (3) ◽  
pp. 27 ◽  
Author(s):  
Džiuginta Jakočiūnė ◽  
Arshnee Moodley

Bacteriophages (phages) are intensely investigated as non-antibiotic alternatives to circumvent antibiotic resistance development as well as last resort therapeutic options against antibiotic resistant bacteria. As part of gaining a better understanding of phages and to determine if phages harbor putative virulence factors, whole genome sequencing is used, for which good quality phage DNA is needed. Traditional phage DNA extraction methods are tedious and time consuming, requiring specialized equipment e.g., an ultra-centrifuge. Here, we describe a quick and simple method (under four hours) to extract DNA from double stranded DNA (dsDNA) phages at titers above 1.0 × 1010 plaque-forming units (PFU)/mL. This DNA was suitable for library preparation using the Nextera XT kit and sequencing on the Illumina MiSeq platform.


2007 ◽  
Vol 68 (1) ◽  
pp. S80
Author(s):  
Victoriano J. Leon ◽  
Alberto J. Leon ◽  
Juan Luis Garcia

Sign in / Sign up

Export Citation Format

Share Document