scholarly journals Impact of Harvest Conditions and Host Tree Species on Chemical Composition and Antioxidant Activity of Extracts from Viscum album L.

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3741
Author(s):  
Wioleta Pietrzak ◽  
Renata Nowak

The content of plant secondary metabolites is not stable, and factors such as the region/location effect and seasonal variations have an impact on their chemical composition, especially in parasitic plants. Research in this area is an important step in the development of quality parameter standards of medicinal plants and their finished products. The effects of the time and place of harvest and the host tree species on the chemical composition and antioxidant activity of mistletoe extracts were investigated. Statistical tools were used to evaluate the results of the spectrophotometric and LC-ESI-MS/MS studies of the phenolic composition and antioxidant activity. The investigations indicate that the qualitative and quantitative composition, influencing the biological activity of mistletoe extracts, largely depends on the origin of the plant. The mistletoe extracts exhibited a rich phenol profile and high antioxidant activity. The chemometric analysis indicated that mistletoe collected from conifers (Viscum abietis and Viscum austriacum) had the most advantageous chemical composition and antioxidant activity. Moreover, the chemical profile and biological activity of the plant material were closely related to the climatic conditions and location of the harvested plant. Higher levels of phenolic compounds and high antioxidant activity were found in extracts obtained from plant material collected in cold weather with the presence of snow and less sunshine (autumn–winter period).

2021 ◽  
Vol 12 ◽  
Author(s):  
Si-Xun Ge ◽  
Feng-Ming Shi ◽  
Jia-He Pei ◽  
Ze-Hai Hou ◽  
Shi-Xiang Zong ◽  
...  

Monochamus saltuarius (Coleoptera: Cerambycidae) is an important native pest in the pine forests of northeast China and a dispersing vector of an invasive species Bursaphelenchus xylophilus. To investigate the bacterial gut diversity of M. saltuarius larvae in different host species, and infer the role of symbiotic bacteria in host adaptation, we used 16S rRNA gene Illumina sequencing and liquid chromatography-mass spectrometry metabolomics processing to obtain and compare the composition of the bacterial community and metabolites in the midguts of larvae feeding on three host tree species: Pinus koraiensis, Pinus sylvestris var. mongolica, and Pinus tabuliformis. Metabolomics in xylem samples from the three aforementioned hosts were also performed. Proteobacteria and Firmicutes were the predominant bacterial phyla in the larval gut. At the genus level, Klebsiella, unclassified_f__Enterobacteriaceae, Lactococcus, and Burkholderia–Caballeronia–Paraburkholderia were most dominant in P. koraiensis and P. sylvestris var. mongolica feeders, while Burkholderia–Caballeronia–Paraburkholderia, Dyella, Pseudoxanthomonas, and Mycobacterium were most dominant in P. tabuliformis feeders. Bacterial communities were similar in diversity in P. koraiensis and P. sylvestris var. mongolica feeders, while communities were highly diverse in P. tabuliformis feeders. Compared with the other two tree species, P. tabuliformis xylems had more diverse and abundant secondary metabolites, while larvae feeding on these trees had a stronger metabolic capacity for secondary metabolites than the other two host feeders. Correlation analysis of the association of microorganisms with metabolic features showed that dominant bacterial genera in P. tabuliformis feeders were more negatively correlated with plant secondary metabolites than those of other host tree feeders.


2020 ◽  
Vol 9 (11) ◽  
pp. e1259119644
Author(s):  
Jael Soares Batista ◽  
Jardel Bezerra da Silva ◽  
Kizzy Millenn de Freitas Mendonça Costa ◽  
Tiago da Silva Teófilo ◽  
Natanael Silva Félix ◽  
...  

Research on the chemical composition and pharmacological activities of geopropolis produced by stingless bees (Hymenoptera, Apidae, Meliponini) may contribute to expand its use of propolis-based formulations in the clinical context. Thus he study aimed to evaluate the chemical composition and biological activity of the hydroethanolic extract (HEG) of the geopropolis of Partamona cupira, obtained in the semiarid region of northeast Brazil. Chemical analyses of HEG were carried out using HPLC-DADESI-MS/MS. The antioxidant activity of extracts was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay method and cytotoxic activity by the in vitro MTT method [brometo de 3- (4.5dimetiltiazol-2-il)-2.5-difeniltetrazolio]. The antibacterial activity of the HEG was evaluated through the disc-diffusion test on agar and measurement of the promoted by the extract in different concentrations. The genoprotective potential of the HEG was evaluated through the comet assay on fibroblasts of L929, co-treated with the extract and submitted to genotoxicity induction with H2O2. We also investigated the healing effect of the cream containing geopropolis (10%) on experimental skin wounds in Wistar rats. The HEG presented in its composition phenolic compounds of high biological activity, as well as revealed high antioxidant activity and promoted genoprotective effect by reducing DNA damage from L929 fibroblasts. The HEG presented antimicrobial activity promoting inhibition of S. aureus, S. pyogenes, E. coli and E. aerogenes. The topical use of the cream containing geopropolis promoted wound closure and faster reepithelialization in relation to the control group, in addition to a less intense inflammatory reaction, increased fibroblastic proliferation and collagen deposition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Purhonen Jenna ◽  
Abrego Nerea ◽  
Komonen Atte ◽  
Huhtinen Seppo ◽  
Kotiranta Heikki ◽  
...  

AbstractThe general negative impact of forestry on wood-inhabiting fungal diversity is well recognized, yet the effect of forest naturalness is poorly disentangled among different fungal groups inhabiting dead wood of different tree species. We studied the relationship between forest naturalness, log characteristics and diversity of different fungal morpho-groups inhabiting large decaying logs of similar quality in spruce dominated boreal forests. We sampled all non-lichenized fruitbodies from birch, spruce, pine and aspen in 12 semi-natural forest sites of varying level of naturalness. The overall fungal community composition was mostly determined by host tree species. However, when assessing the relevance of the environmental variables separately for each tree species, the most important variable varied, naturalness being the most important explanatory variable for fungi inhabiting pine and aspen. More strikingly, the overall species richness increased as the forest naturalness increased, both at the site and log levels. At the site scale, the pattern was mostly driven by the discoid and pyrenoid morpho-groups inhabiting pine, whereas at the log scale, it was driven by pileate and resupinate morpho-groups inhabiting spruce. Although our study demonstrates that formerly managed protected forests serve as effective conservation areas for most wood-inhabiting fungal groups, it also shows that conservation planning and management should account for group- or host tree -specific responses.


2012 ◽  
Vol 17 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Michimasa Yamasaki ◽  
Kazuyoshi Futai

2002 ◽  
Vol 32 (9) ◽  
pp. 1562-1576 ◽  
Author(s):  
Gregory G McGee ◽  
Robin W Kimmerer

The objective of this study was to assess the influence of substrate heterogeneity on epiphytic bryophyte communities in northern hardwood forests of varying disturbance histories. Specifically, we compared bryophyte abundance (m2·ha–1) and community composition among partially cut; maturing, 90- to 100-year-old, even-aged; and old-growth northern hardwood stands in Adirondack Park, New York, U.S.A. Total bryophyte cover from 0 to 1.5 m above ground level on trees [Formula: see text]10 cm diameter at breast height (DBH) did not differ among the three stand types. However, bryophyte community composition differed among host tree species and among stand types. Communities in partially cut and maturing stands were dominated by xerophytic bryophytes (Platygyrium repens, Frullania eboracensis, Hypnum pallescens, Brachythecium reflexum, Ulota crispa), while old-growth stands contained a greater representation of calcicoles and mesophytic species (Brachythecium oxycladon, Anomodon rugelii, Porella platyphylloidea, Anomodon attenuatus, Leucodon brachypus, Neckera pennata). This mesophyte-calcicole assemblage occurred in all stand types but was limited by the abundance of large-diameter (>50 cm DBH), thick-barked, hardwood host trees (Acer saccharum Marsh., Tilia americana L., Fraxinus americana L.). This study suggested that epiphytic bryophyte diversity can be sustained and enhanced in managed northern hardwood forests by maintaining host tree species diversity and retaining large or old, thick-barked residual hardwood stems when applying even-aged and uneven-aged silviculture systems.


2016 ◽  
Vol 61 (No. 1) ◽  
pp. 18-26 ◽  
Author(s):  
Nakládal Oto ◽  
Uhlíková Hana

Sign in / Sign up

Export Citation Format

Share Document