scholarly journals Carbon-Coated SiO2 Composites as Promising Anode Material for Li-Ion Batteries

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4531
Author(s):  
Mihaela-Ramona Buga ◽  
Adnana Alina Spinu-Zaulet ◽  
Cosmin Giorgian Ungureanu ◽  
Raul-Augustin Mitran ◽  
Eugeniu Vasile ◽  
...  

Porous silica-based materials are a promising alternative to graphite anodes for Li-ion batteries due to their high theoretical capacity, low discharge potential similar to pure silicon, superior cycling stability compared to silicon, abundance, and environmental friendliness. However, several challenges prevent the practical application of silica anodes, such as low coulombic efficiency and irreversible capacity losses during cycling. The main strategy to tackle the challenges of silica as an anode material has been developed to prepare carbon-coated SiO2 composites by carbonization in argon atmosphere. A facile and eco-friendly method of preparing carbon-coated SiO2 composites using sucrose is reported herein. The carbon-coated SiO2 composites were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, cyclic voltammetry, and charge–discharge cycling. A C/SiO2-0.085 M calendered electrode displays the best cycling stability, capacity of 714.3 mAh·g−1, and coulombic efficiency as well as the lowest charge transfer resistance over 200 cycles without electrode degradation. The electrochemical performance improvement could be attributed to the positive effect of the carbon thin layer that can effectively diminish interfacial impedance.

2019 ◽  
Vol 3 (9) ◽  
pp. 2361-2365 ◽  
Author(s):  
Xiaoyong Dou ◽  
Ming Chen ◽  
Jiantao Zai ◽  
Zhen De ◽  
Boxu Dong ◽  
...  

Silicon (Si) has been regarded as a promising next-generation anode material to replace carbon-based materials for lithium ion batteries (LIBs).


2016 ◽  
Vol 4 (25) ◽  
pp. 9760-9766 ◽  
Author(s):  
Peiyu Wang ◽  
Rutao Wang ◽  
Junwei Lang ◽  
Xu Zhang ◽  
Zhenkun Chen ◽  
...  

Lithium-ion hybrid capacitors (LIHCs) are receiving intense interest because they can combine the distinctive advantages of Li-ion batteries and supercapacitors.


RSC Advances ◽  
2015 ◽  
Vol 5 (29) ◽  
pp. 22449-22454 ◽  
Author(s):  
Tao Shen ◽  
Xufeng Zhou ◽  
Hailiang Cao ◽  
Chao Zheng ◽  
Zhaoping Liu

The TiO2(B)–CNT–graphene ternary composite, in which graphene and CNTs construct a highly efficient conductive network, exhibits excellent rate performance and cycling stability as an anode material for Li-ion batteries.


2004 ◽  
Vol 16 (3) ◽  
pp. 504-512 ◽  
Author(s):  
N. Sharma ◽  
K. M. Shaju ◽  
G. V. Subba Rao ◽  
B. V. R. Chowdari ◽  
Z. L. Dong ◽  
...  

Author(s):  
Martin Reichardt ◽  
Sébastien Sallard ◽  
Petr Novák ◽  
Claire Villevieille

Lithium chromium pyrophosphate (LiCrP2O7) and carbon-coated LiCrP2O7 (LiCrP2O7/C) were synthesized by solid-state and sol–gel routes, respectively. The materials were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and conductivity measurements. LiCrP2O7 powder has a conductivity of ∼ 10−8 S cm−1, ∼ 104 times smaller than LiCrP2O7/C (∼ 10−4 S cm−1). LiCrP2O7/C is electrochemically active, mainly between 1.8 and 2.2 V versus Li+/Li (Cr3+/Cr2+ redox couple), whereas LiCrP2O7 has limited electrochemical activity. LiCrP2O7/C delivers a reversible specific charge up to ∼ 105 mAh g−1 after 100 cycles, close to the theoretical limit of 115 mAh g−1. Operando XRD experiments show slight peak shifts between 2.2 and 4.8 V versus Li+/Li, and a reversible amorphization between 1.8 and 2.2 V versus Li+/Li, suggesting an insertion reaction mechanism.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5397
Author(s):  
Hyungeun Seo ◽  
Hae-Ri Yang ◽  
Youngmo Yang ◽  
Kyungbae Kim ◽  
Sung Hyon Kim ◽  
...  

Si-based anodes for Li-ion batteries (LIBs) are considered to be an attractive alternative to graphite due to their higher capacity, but they have low electrical conductivity and degrade mechanically during cycling. In the current study, we report on a mass-producible porous Si-CoSi2-C composite as a high-capacity anode material for LIBs. The composite was synthesized with two-step milling followed by a simple chemical etching process. The material conversion and porous structure were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and electron microscopy. The electrochemical test results demonstrated that the Si-CoSi2-C composite electrode exhibits greatly improved cycle and rate performance compared with conventional Si-C composite electrodes. These results can be ascribed to the role of CoSi2 and inside pores. The CoSi2 synthesized in situ during high-energy mechanical milling can be well attached to the Si; its conductive phase can increase electrical connection with the carbon matrix and the Cu current collectors; and it can accommodate Si volume changes during cycling. The proposed synthesis strategy can provide a facile and cost-effective method to produce Si-based materials for commercial LIB anodes.


2019 ◽  
Vol 7 (37) ◽  
pp. 21270-21279 ◽  
Author(s):  
Yanmin Qin ◽  
Zhongqing Jiang ◽  
Liping Guo ◽  
Jianlin Huang ◽  
Zhong-Jie Jiang ◽  
...  

N, S co-doped carbon coated MnOS (MnOS@NSC) has been demonstrated to be a potential anode material for LIBs with high capacity, good cycling stability and excellent rate performance.


2016 ◽  
Vol 4 (38) ◽  
pp. 14687-14692 ◽  
Author(s):  
Fei Ye ◽  
Yuncheng Hu ◽  
Yong Zhao ◽  
Degui Zhu ◽  
Yonggui Wang ◽  
...  

A new hierarchical hollow α-Fe2O3 nanostructure that has a nanosphere morphology of approximately 250 nm in diameter integrated with ensembles of 15 nm diameter nanotubes is designed and engineered. As an anode material for Li-ion batteries, the HHFN exhibits significantly improved Li storage capability, good cycling stability, as well as high-rate performance.


Sign in / Sign up

Export Citation Format

Share Document