scholarly journals Iloprost Attenuates Oxidative Stress-Dependent Activation of Collagen Synthesis Induced by Sera from Scleroderma Patients in Human Pulmonary Microvascular Endothelial Cells

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4729
Author(s):  
Roberta Giordo ◽  
Duong Thi Bich Thuan ◽  
Anna Maria Posadino ◽  
Annalisa Cossu ◽  
Angelo Zinellu ◽  
...  

Endothelial cell injury is an early event in systemic sclerosis (SSc) pathogenesis and several studies indicate oxidative stress as the trigger of SSc-associated vasculopathy. Here, we show that circulating factors present in sera of SSc patients increased reactive oxygen species (ROS) production and collagen synthesis in human pulmonary microvascular endothelial cells (HPMECs). In addition, the possibility that iloprost, a drug commonly used in SSc therapy, might modulate the above-mentioned biological phenomena has been also investigated. In this regard, as compared to sera of SSc patients, sera of iloprost-treated SSc patients failed to increased ROS levels and collagen synthesis in HPMEC, suggesting a potential antioxidant mechanism of this drug.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Wenjie Zhou ◽  
Guocui Shi ◽  
Jijia Bai ◽  
Shenmao Ma ◽  
Qinfu Liu ◽  
...  

Background. There are currently limited effective pharmacotherapy agents for acute lung injury (ALI). Inflammatory response in the lungs is the main pathophysiological process of ALI. Our preliminary data have shown that colquhounia root tablet (CRT), a natural herbal medicine, alleviates the pulmonary inflammatory responses and edema in a rat model with oleic acid-induced ALI. However, the potential molecular action mechanisms underlining its protective effects against ALI are poorly understood. This study aimed to investigate the effects and mechanism of CRT in rat pulmonary microvascular endothelial cells (PMEC) with TNF-α-induced injury. Methods. PMECs were divided into 6 groups: normal control, TNF-α (10 ng/mL TNF-α), Dex (1×10-6 M Dex + 10 ng/mL TNF-α), CRT high (1000 ng/mL CRT + 10 ng/mL TNF-α), CRT medium (500 ng/mL CRT + 10 ng/mL TNF-α), and CRT low group (250 ng/mL CRT + 10 ng/mL TNF-α). Cell proliferation and apoptosis were detected by MTT assay and flow cytometry. Cell micromorphology was observed under transmission electron microscope. The localization and expression of tight junction proteins Claudin-5 and ZO-1 were analyzed by immunofluorescence staining and Western blot, respectively. Results. TNF-a had successfully induced an acute endothelial cell injury model. Dex and CRT treatments had significantly stimulated the growth and reduced the apoptosis of PMECs (all p < 0.05 or 0.01) and alleviated the TNF-α-induced cell injury. The expression of Claudin-5 and ZO-1 in Dex and all 3 CRT groups was markedly increased compared with TNF-a group (all p < 0.05 or 0.01). Conclusion. CRT effectively protects PMECs from TNF-α-induced injury, which might be mediated via stabilizing the structure of tight junction. CRT might be a promising, effective, and safe therapeutic agent for the treatment of ALI.


2007 ◽  
Vol 292 (3) ◽  
pp. L671-L677 ◽  
Author(s):  
Victor Solodushko ◽  
Brian Fouty

Endothelial cells perform a number of important functions including release of vasodilators, control of the coagulation cascade, and restriction of solutes and fluid from the extravascular space. Regulation of fluid balance is of particular importance in the microcirculation of the lung where the loss of endothelial barrier function can lead to alveolar flooding and life-threatening hypoxemia. Significant heterogeneity exists between endothelial cells lining the microcirculation and cells from larger pulmonary arteries, however, and these differences may be relevant in restoring barrier function following vascular injury. Using well-defined populations of rat endothelial cells harvested from the pulmonary microcirculation [pulmonary microvascular endothelial cells (PMVEC)] and from larger pulmonary arteries [pulmonary artery endothelial cells (PAEC)], we compared their growth characteristics in low serum conditions. Withdrawal of serum inhibited proliferation and induced G0/G1 arrest in PAEC, whereas PMVEC failed to undergo G0/G1 arrest and continued to proliferate. Consistent with this observation, PMVEC had an increased cdk4 and cdk2 kinase activity with hyperphosphorylated (inactive) retinoblastoma (Rb) relative to PAEC as well as a threefold increase in cyclin D1 protein levels; overexpression of the cdk inhibitors p21Cip1/Waf1 and p27Kip1 induced G0/G1 arrest. While serum withdrawal failed to induce G0/G1 arrest in nonconfluent PMVEC, confluence was associated with hypophosphorylated Rb and growth arrest; loss of confluence led to resumption of growth. These data suggest that nonconfluent PMVEC continue to proliferate independently of growth factors. This proliferative characteristic may be important in restoring confluence (and barrier function) in the pulmonary microcirculation following endothelial injury.


Sign in / Sign up

Export Citation Format

Share Document