scholarly journals Probing the Suitability of Different Ca2+ Parameters for Long Simulations of Diisopropyl Fluorophosphatase

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5839
Author(s):  
Alexander Zlobin ◽  
Igor Diankin ◽  
Sergey Pushkarev ◽  
Andrey Golovin

Organophosphate hydrolases are promising as potential biotherapeutic agents to treat poisoning with pesticides or nerve gases. However, these enzymes often need to be further engineered in order to become useful in practice. One example of such enhancement is the alteration of enantioselectivity of diisopropyl fluorophosphatase (DFPase). Molecular modeling techniques offer a unique opportunity to address this task rationally by providing a physical description of the substrate-binding process. However, DFPase is a metalloenzyme, and correct modeling of metal cations is a challenging task generally coming with a tradeoff between simulation speed and accuracy. Here, we probe several molecular mechanical parameter combinations for their ability to empower long simulations needed to achieve a quantitative description of substrate binding. We demonstrate that a combination of the Amber19sb force field with the recently developed 12-6 Ca2+ models allows us to both correctly model DFPase and obtain new insights into the DFP binding process.

2021 ◽  
Author(s):  
Monica Butnariu ◽  
Massimiliano Peana ◽  
Ioan Sarac ◽  
Salvatore Chirumbolo ◽  
Haralampos Tzoupis ◽  
...  

AbstractDatura stramonium L. (Solanaceae) possesses a rich tropane alkaloids (TAs) spectrum. The plant contains, in particular, the allelopathic compounds scopolamine and atropine, which are poorly soluble in water, thus limiting their use in agrochemical formulations as biocidal and deterrent agents against herbivore insects. The efficacy of the hydrophobic TAs extracts could be increased with the improvement of their dissolution/leaching properties. This is important for improving screening and test performance and for elucidating the activity of environmentally friendly agricultural approaches, with new perspectives for the production and use of those biodegradable insecticidal products. The present study explores the aspects of atropine and scopolamine complexation with cyclodextrin (CDs) through FT-IR and UV–Vis spectroscopies. In addition, the structures of the inclusion complex of atropine, scopolamine and β-CD have been investigated by molecular modeling techniques. The results obtained indicate that β-CDs are a promising carriers for improving the properties of TAs, therefore increasing their application potential in agrochemical formulations. Graphic abstract


2017 ◽  
Vol 77 ◽  
pp. 350-362 ◽  
Author(s):  
Léonard Jaillet ◽  
Svetlana Artemova ◽  
Stephane Redon

2001 ◽  
Vol 48 (4) ◽  
pp. 995-1002 ◽  
Author(s):  
M Szabelski ◽  
K Stachowiak ◽  
W Wiczk

Papain activity in a buffer containing Me2SO was studied using fluorogenic substrates. It was found that the number of active sites of papain decreases with increasing Me2SO concentration whereas the incubation time, in a buffer containing 3% Me2SO does not affect the number of active sites. However, an increase of papain incubation time in the buffer with 3% Me2SO decreased the initial rate of hydrolysis of Z-Phe-Arg-Amc as well as Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans. Moreover, an increase of Me2SO concentration in working buffer decreased the initial rate of papain-catalysed hydrolysis of both substrates. A rapid decrease of the initial rate (by up to 30%) was observed between 1 and 2% Me2SO. Application of the Michaelis-Menten equation revealed that at the higher Me2SO concentrations the apparent values of k(cat)/Km decreased as a result of Km increase and kcat decrease. However, Me2SO changed the substrate binding process more effectively (Km) than the rate of catalysis k(cat).


Sign in / Sign up

Export Citation Format

Share Document