scholarly journals High-Resolution Mass Spectrometry and Chemometrics for the Detailed Characterization of Short Endogenous Peptides in Milk By-Products

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6472
Author(s):  
Carmela Maria Montone ◽  
Sara Elsa Aita ◽  
Chiara Cavaliere ◽  
Andrea Cerrato ◽  
Aldo Laganà ◽  
...  

The process of cheese-making has long been part of human food culture and nowadays dairy represents a large sector of the food industry. Being the main byproduct of cheese-making, the revalorization of milk whey is nowadays one of the primary goals in alignment with the principles of the circular economy. In the present paper, a deep and detailed investigation of short endogenous peptides in milk and its byproducts (whole whey, skimmed whey, and whey permeate) was carried out by high-resolution mass spectrometry, with a dedicated suspect screening data acquisition and data analysis approach. A total of 79 short peptides was tentatively identified, including several sequences already known for their exerted biological activities. An unsupervised chemometric approach was then employed for highlighting the differences in the short peptide content among the four sets of samples. Whole and skimmed whey showed not merely a higher content of short bioactive peptides compared to whole milk, but also a peculiar composition of peptides that are likely generated during the process of cheese-making. The results clearly demonstrate that whey represents a valuable source of bioactive compounds and that the set-up of processes of revalorization of milk byproducts is a promising path in the obtention of high revenue-generating products from dairy industrial waste.

2020 ◽  
Author(s):  
Jie Cheng ◽  
Yuchen Tang ◽  
Baoquan Bao ◽  
Ping Zhang

<p><a></a><a></a><a></a><a><b>Objective</b></a>: To screen all compounds of Agsirga based on the HPLC-Q-Exactive high-resolution mass spectrometry and find potential inhibitors that can respond to 2019-nCoV from active compounds of Agsirga by molecular docking technology.</p> <p><b>Methods</b>: HPLC-Q-Exactive high-resolution mass spectrometry was adopted to identify the complex components of Mongolian medicine Agsirga, and separated by the high-resolution mass spectrometry Q-Exactive detector. Then the Orbitrap detector was used in tandem high-resolution mass spectrometry, and the related molecular and structural formula were found by using the chemsipider database and related literature, combined with precise molecular formulas (errors ≤ 5 × 10<sup>−6</sup>) , retention time, primary mass spectra, and secondary mass spectra information, The fragmentation regularities of mass spectra of these compounds were deduced. Taking ACE2 as the receptor and deduced compounds as the ligand, all of them were pretreated by discover studio, autodock and Chem3D. The molecular docking between the active ingredients and the target protein was studied by using AutoDock molecular docking software. The interaction between ligand and receptor is applied to provide a choice for screening anti-2019-nCoV drugs.</p> <p><b>Result</b>: Based on the fragmentation patterns of the reference compounds and consulting literature, a total of 96 major alkaloids and stilbenes were screened and identified in Agsirga by the HPLC-Q-Exactive-MS/MS method. Combining with molecular docking, a conclusion was got that there are potential active substances in Mongolian medicine Agsirga which can block the binding of ACE2 and 2019-nCoV at the molecular level.</p>


2020 ◽  
Vol 86 (8) ◽  
pp. 23-31
Author(s):  
V. G. Amelin ◽  
D. S. Bolshakov

The goal of the study is developing a methodology for determination of the residual amounts of quaternary ammonium compounds (QAC) in food products by UHPLC/high-resolution mass spectrometry after water-acetonitrile extraction of the determined components from the analyzed samples. The identification and determination of QAC was carried out on an «UltiMate 3000» ultra-high-performance liquid chromatograph (Thermo Scientific, USA) equipped with a «maXis 4G» high-resolution quadrupole-time-of-flight mass spectrometric detector and an ion spray «ionBooster» source (Bruker Daltonics, Germany). Samples of milk, cheese (upper cortical layer), dumplings, pork, chicken skin and ground beef were used as working samples. Optimal conditions are specified for chromatographic separation of the mixture of five QAC, two of them being a mixture of homologues with a linear structure (including isomeric forms). The identification of QAC is carried out by the retention time, exact mass of the ions, and coincidence of the mSigma isotopic distribution. The limits for QAC detection are 0.1 – 0.5 ng/ml, the determination limits are 1 ng/ml for aqueous standard solutions. The determinable content of QAC in food products ranges within 1 – 100 ng/g. The results of analysis revealed the residual amount of QAC present in all samples, which confirms data of numerous sources of information about active use of QAC-based disinfectants in the meat and dairy industry. The correctness of the obtained results is verified by introduction of the additives in food products at a level of 10 ng/g for each QAC. The relative standard deviation of the analysis results does not exceed 0.18. The duration of the analysis is 30 – 40 min.


Sign in / Sign up

Export Citation Format

Share Document