scholarly journals The Renin-Angiotensin System: A Key Role in SARS-CoV-2- Induced COVID-19

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6945
Author(s):  
George El-Arif ◽  
Antonella Farhat ◽  
Shaymaa Khazaal ◽  
Cédric Annweiler ◽  
Hervé Kovacic ◽  
...  

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), was first identified in Eastern Asia (Wuhan, China) in December 2019. The virus then spread to Europe and across all continents where it has led to higher mortality and morbidity, and was declared as a pandemic by the World Health Organization (WHO) in March 2020. Recently, different vaccines have been produced and seem to be more or less effective in protecting from COVID-19. The renin–angiotensin system (RAS), an essential enzymatic cascade involved in maintaining blood pressure and electrolyte balance, is involved in the pathogenicity of COVID-19, since the angiotensin-converting enzyme II (ACE2) acts as the cellular receptor for SARS-CoV-2 in many human tissues and organs. In fact, the viral entrance promotes a downregulation of ACE2 followed by RAS balance dysregulation and an overactivation of the angiotensin II (Ang II)–angiotensin II type I receptor (AT1R) axis, which is characterized by a strong vasoconstriction and the induction of the profibrotic, proapoptotic and proinflammatory signalizations in the lungs and other organs. This mechanism features a massive cytokine storm, hypercoagulation, an acute respiratory distress syndrome (ARDS) and subsequent multiple organ damage. While all individuals are vulnerable to SARS-CoV-2, the disease outcome and severity differ among people and countries and depend on a dual interaction between the virus and the affected host. Many studies have already pointed out the importance of host genetic polymorphisms (especially in the RAS) as well as other related factors such age, gender, lifestyle and habits and underlying pathologies or comorbidities (diabetes and cardiovascular diseases) that could render individuals at higher risk of infection and pathogenicity. In this review, we explore the correlation between all these risk factors as well as how and why they could account for severe post-COVID-19 complications.

2005 ◽  
Vol 288 (4) ◽  
pp. F614-F625 ◽  
Author(s):  
Dinesh M. Shah

Preeclampsia is a hypertensive disorder unique to pregnancy with consistent involvement of the kidney. The renin-angiotensin system (RAS) has been implicated in the pathogenesis of preeclampsia. In the gravid state, in addition to the RAS in the kidney, there is a tissue-based RAS in the uteroplacental unit. Increased renin expression observed both in human preeclampsia and in a transgenic mouse model with a human preeclampsia-like syndrome supports the concept that activation of the uteroplacental RAS, with angiotensin II entering the systemic circulation, may mediate the pathogenesis of preeclampsia. A novel disease paradigm of the two-kidney one-clip (2K-1C) Goldblatt model is presented for preeclampsia, wherein the gravid uterus is the clipped “kidney” and the two maternal kidneys represent the unclipped kidney. Validation of the 2K-1C Goldblatt model analogy requires evidence of elevated angiotensin II in the peripheral circulation before vascular maladaptation in preeclampsia. Convincing evidence of the elevation of angiotensin II in preeclampsia does not exist despite the fact that much of vascular pathogenesis appears to be due to angiotensin type I (AT1) receptor activation. Vascular maladaptation with increased vasomotor tone, endothelial dysfunction, and increased sensitivity to angiotensin II and norepinephrine in manifest preeclampsia may be explained on the basis of angiotensin II-mediated mechanisms. Recently, novel angiotensin II-related biomolecular mechanisms have been described in preeclampsia. These include AT1and bradykinin B2receptor heterodimerization and the production of an autoantibody against AT1. Various organ systems with a predilection for involvement in preeclampsia are each a site of a tissue-based RAS. How angiotensin II-mediated mechanisms may explain the primary clinical-pathological features of preeclampsia is described. Future investigations are proposed to more precisely define the role of activation of the uteroplacental RAS in the mechanisms underlying preeclampsia.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1741 ◽  
Author(s):  
In-Ae Jang ◽  
Eun Kim ◽  
Ji Lim ◽  
Min Kim ◽  
Tae Ban ◽  
...  

The renin-angiotensin system (RAS), especially the angiotensin II (Ang II)/angiotensin II type 1 receptor (AT1R) axis, plays an important role in the aging process of the kidney, through increased tissue reactive oxygen species production and progressively increased oxidative stress. In contrast, the angiotensin 1-7 (Ang 1-7)/Mas receptor (MasR) axis, which counteracts the effects of Ang II, is protective for end-organ damage. To evaluate the ability of resveratrol (RSV) to modulate the RAS in aging kidneys, eighteen-month-old male C57BL/6 mice were divided into two groups that received either normal mouse chow or chow containing resveratrol, for six months. Renal expressions of RAS components, as well as pro- and antioxidant enzymes, were measured and mouse kidneys were isolated for histopathology. Resveratrol-treated mice demonstrated better renal function and reduced albuminuria, with improved renal histologic findings. Resveratrol suppressed the Ang II/AT1R axis and enhanced the AT2R/Ang 1-7/MasR axis. Additionally, the expression of nicotinamide adenine dinucleotide phosphate oxidase 4, 8-hydroxy-2′-deoxyguanosine, 3-nitrotyrosine, collagen IV, and fibronectin was decreased, while the expression of endothelial nitric oxide synthase and superoxide dismutase 2 was increased by resveratrol treatment. These findings demonstrate that resveratrol exerts protective effects on aging kidneys by reducing oxidative stress, inflammation, and fibrosis, through Ang II suppression and MasR activation.


TH Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e138-e144 ◽  
Author(s):  
Wolfgang Miesbach

AbstractThe activated renin–angiotensin system induces a prothrombotic state resulting from the imbalance between coagulation and fibrinolysis. Angiotensin II is the central effector molecule of the activated renin–angiotensin system and is degraded by the angiotensin-converting enzyme 2 to angiotensin (1–7). The novel coronavirus infection (classified as COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as acute respiratory distress syndrome, sepsis, and death in a proportion of patients, mostly elderly patients with preexisting comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor to enter the target cells, resulting in activation of the renin–angiotensin system. After downregulating the angiotensin-converting enzyme 2, the vasoconstrictor angiotensin II is increasingly produced and its counterregulating molecules angiotensin (1–7) reduced. Angiotensin II increases thrombin formation and impairs fibrinolysis. Elevated levels were strongly associated with viral load and lung injury in patients with severe COVID-19. Therefore, the complex clinical picture of patients with severe complications of COVID-19 is triggered by the various effects of highly expressed angiotensin II on vasculopathy, coagulopathy, and inflammation. Future treatment options should focus on blocking the thrombogenic and inflammatory properties of angiotensin II in COVID-19 patients.


1977 ◽  
Vol 232 (5) ◽  
pp. F434-F437 ◽  
Author(s):  
R. H. Freeman ◽  
J. O. Davis ◽  
W. S. Spielman

Suprarenal aortic constriction sufficient to reduce renal perfusion pressure by approximately 50% increased aldosterone secretion in anesthetized rats pretreated with dexamethasone. Bilateral nephrectomy under the same experimental conditions blocked the aldosterone response. Additionally, [1-sarcosine, 8-alanine]angiotensin II blocked the response in aldosterone secretion to aortic constriction in dexamethasone-treated rats. Finally, in rats hypophysectomized to exclude the influence of ACTH, the aldosterone response to aortic constriction was blocked by [1-sarcosine, 8-alanine]angiotensin II. The results indicate that angiotensin II increased aldosterone secretion during aortic constriction in the rat. These observations, along with those reported previously in sodium-depleted rats, point to an important overall role for the renin-angiotensin system in the control of aldosterone secretion in the rat.


2019 ◽  
Vol 97 (12) ◽  
pp. 1115-1123 ◽  
Author(s):  
Seldag Bekpinar ◽  
Ece Karaca ◽  
Selin Yamakoğlu ◽  
F. İlkay Alp-Yıldırım ◽  
Vakur Olgac ◽  
...  

Cyclosporine, an immunosuppressive drug, exhibits a toxic effect on renal and vascular systems. The present study investigated whether resveratrol treatment alleviates renal and vascular injury induced by cyclosporine. Cyclosporine (25 mg/kg per day, s.c.) was given for 7 days to rats either alone or in combination with resveratrol (10 mg/kg per day, i.p.). Relaxation and contraction responses of aorta were examined. Serum levels of blood urea nitrogen, creatinine, angiotensin II, and angiotensin 1-7 were measured. Histopathological examinations as well as immunostaining for 4-hydroxynonenal and nitrotyrosine were performed in the kidney. RNA expressions of renin–angiotensin system components were also measured in renal and aortic tissues. Cyclosporine decreased the endothelium-dependent relaxation and increased vascular contraction in the aorta. It caused renal tubular degeneration and increased immunostaining for 4-hydroxynonenal, an oxidative stress marker. Cyclosporine also caused upregulations of the vasoconstrictive renin–angiotensin system components in renal (angiotensin-converting enzyme) and aortic (angiotensin II type 1 receptor) tissues. Resveratrol co-treatment prevented the cyclosporine-related deteriorations. Moreover, it induced the expressions of vasodilatory effective angiotensin-converting enzyme 2 and angiotensin II type 2 receptor in aorta and kidney, respectively. We conclude that resveratrol may be effective in preventing cyclosporine-induced renal tubular degeneration and vascular dysfunction at least in part by modulating the renin–angiotensin system.


2021 ◽  
Vol 27 ◽  
Author(s):  
Ghazaleh Khalili-Tanha ◽  
Nima Khalili-Tanha ◽  
Seyedeh Elnaz Nazari ◽  
Negin Chaeichi-Tehrani ◽  
Majid Khazaei ◽  
...  

Background: Post-surgical adhesion is a common complication after abdominal or pelvic surgeries. Despite improvements in surgical techniques or the application of physical barriers, little improvements have been achieved. It causes bowel obstruction, pelvic pain, and infertility in women and has an adverse effect on the quality of life. Renin-Angiotensin System (RAS) is traditionally considered as a blood pressure regulator. However, recent studies also indicate that the RAS plays a vital role in other processes, including oxidative stress, fibrosis, proliferation, inflammation, and the wound healing process. Angiotensin II (Ang II) is the main upstream effector of the RAS that can bind to the AT1 receptor (ATIR). A growing body of evidence has revealed that targeting Angiotensin-Converting Enzyme Inhibitors (ACEIs), Angiotensin II type 1 Receptor Blockers (ARBs), and Direct Renin Inhibitors (DRIs) can prevent post-surgical adhesions. Here we provide an overview of the therapeutic effect of RAS antagonists for adhesion. Methods: PubMed, EMBASE, and the Cochrane library were reviewed to identify potential agents targeting the RAS system as a potential approach for post-surgical adhesion. Results: Available evidence suggests the involvement of the RAS signaling pathway in inflammation, proliferation, and fibrosis pathways as well as in post-surgical adhesions. Several FDA-approved drugs are being used for targeting the RAS system. Some of them are being tested in different models to reduce fibrosis and improve adhesion after surgery, including Telmisartan, valsartan, and enalapril. Conclusion: Identification of the pathological causes of post-surgical adhesion and the potential role of targeting Renin–Angiotensin System may help prevent this problem. Based on the pathological function of RAS signaling after surgeries, the administration of ARBs may be considered as a novel and efficient approach to prevent postsurgical adhesions. Pre-clinical and clinical studies should be carried out to have better information on the clinical significance of this therapy against post-surgical adhesion formation.


Sign in / Sign up

Export Citation Format

Share Document