scholarly journals Origins of Giant Dielectric Properties with Low Loss Tangent in Rutile (Mg1/3Ta2/3)0.01Ti0.99O2 Ceramic

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6952
Author(s):  
Nateeporn Thongyong ◽  
Narong Chanlek ◽  
Pornjuk Srepusharawoot ◽  
Prasit Thongbai

The Mg2+/Ta5+ codoped rutile TiO2 ceramic with a nominal composition (Mg1/3Ta2/3)0.01Ti0.99O2 was synthesized using a conventional solid-state reaction method and sintered at 1400 °C for 2 h. The pure phase of the rutile TiO2 structure with a highly dense microstructure was obtained. A high dielectric permittivity (2.9 × 104 at 103 Hz) with a low loss tangent (<0.025) was achieved in the as-sintered ceramic. After removing the outer surface, the dielectric permittivity of the polished ceramic increased from 2.9 × 104 to 6.0 × 104, while the loss tangent also increased (~0.11). The dielectric permittivity and loss tangent could be recovered to the initial value of the as-sintered ceramic by annealing the polished ceramic in air. Notably, in the temperature range of −60–200 °C, the dielectric permittivity (103 Hz) of the annealed ceramic was slightly dependent (<±4.4%), while the loss tangent was very low (0.015–0.036). The giant dielectric properties were likely contributed by the insulating grain boundaries and insulative surface layer effects.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3230
Author(s):  
Theeranuch Nachaithong ◽  
Narong Chanlek ◽  
Pairot Moontragoon ◽  
Prasit Thongbai

(Co, Nb) co-doped rutile TiO2 (CoNTO) nanoparticles with low dopant concentrations were prepared using a wet chemistry method. A pure rutile TiO2 phase with a dense microstructure and homogeneous dispersion of the dopants was obtained. By co-doping rutile TiO2 with 0.5 at.% (Co, Nb), a very high dielectric permittivity of ε′ » 36,105 and a low loss tangent of tanδ » 0.04 were achieved. The sample–electrode contact and resistive outer-surface layer (surface barrier layer capacitor) have a significant impact on the dielectric response in the CoNTO ceramics. The density functional theory calculation shows that the 2Co atoms are located near the oxygen vacancy, creating a triangle-shaped 2CoVoTi complex defect. On the other hand, the substitution of TiO2 with Nb atoms can form a diamond-shaped 2Nb2Ti complex defect. These two types of complex defects are far away from each other. Therefore, the electron-pinned defect dipoles cannot be considered the primary origins of the dielectric response in the CoNTO ceramics. Impedance spectroscopy shows that the CoNTO ceramics are electrically heterogeneous, comprised of insulating and semiconducting regions. Thus, the dielectric properties of the CoNTO ceramics are attributed to the interfacial polarization at the internal insulating layers with very high resistivity, giving rise to a low loss tangent.


2020 ◽  
Vol 46 (7) ◽  
pp. 9780-9785 ◽  
Author(s):  
Pariwat Saengvong ◽  
Jakkree Boonlakhorn ◽  
Narong Chanlek ◽  
Bundit Putasaeng ◽  
Prasit Thongbai

2016 ◽  
Vol 06 (04) ◽  
pp. 1650031 ◽  
Author(s):  
T. Sreenivasu ◽  
P. Tirupathi ◽  
K. Prabahar ◽  
B. Suryanarayana ◽  
K. Chandra Mouli

The solid solutions of ([Formula: see text]) LaFeO3–[Formula: see text]BaTiO3 (0.0[Formula: see text]0.25) have been synthesized successfully by the conventional solid-state reaction method. Room temperature (RT) X-ray diffraction studies reveal the stabilization of orthorhombic phase with Pbnm space group. Complete solubility in the perovskite series was demonstrated up to [Formula: see text]. The dielectric permittivity shows colossal dielectric constant (CDC) at RT. The doping of BaTiO3 in LaFeO3 exhibit pronounced CDC up to a composition [Formula: see text], further it starts to decrease. The frequency-dependent dielectric loss exhibits polaronic conduction, which can attribute to presence of multiple valence of iron. The relaxation frequency and polaronic conduction mechanism was shifted towards RT as function of [Formula: see text]. Moreover, large magnetic moment with weak ferromagnetic behavior is observed in doped LaFeO3 solid solution, which might be the destruction of spin cycloid structure due to insertion of Ti in Fe–O–Fe network of LaFeO3.


RSC Advances ◽  
2017 ◽  
Vol 7 (28) ◽  
pp. 17128-17136 ◽  
Author(s):  
Keerati Meeporn ◽  
Prasit Thongbai ◽  
Teerapon Yamwong ◽  
Santi Maensiri

The effect of La1.7Sr0.3NiO4 nanoparticles (LSNO-NPs) on the dielectric properties of LSNO-NPs/polyvinylidene fluoride (LSNO-NPs/PVDF) composites is presented.


2020 ◽  
Vol 46 (3) ◽  
pp. 2954-2959 ◽  
Author(s):  
Weimin Xia ◽  
Yiming Liu ◽  
Ge Wang ◽  
Jinglei Li ◽  
Congjun Cao ◽  
...  

2015 ◽  
Vol 1107 ◽  
pp. 45-52
Author(s):  
Aaliyawani Ezzerin Sinin ◽  
Walter Charles Primus ◽  
Abdul Halim Shaari ◽  
Zainal Abidin Talib ◽  
Sinin Hamdan

Ceramic sample of La0.70Ba0.30Mn0.40Ti0.60O3 oxide has been prepared by the conventional solid-state reaction method. The sintered sample was characterized by using x-ray diffraction (XRD) and low frequency LCR meter. XRD result shows that the sample has a cubic structure with the existence of impurity phase. The dielectric properties of La0.70Ba0.30Mn0.40Ti0.60O3 measured from room temperature to 200°C shows that the dielectric permittivity is temperature dependence with strong dispersion at low frequencies. A circuit model based on the universal capacitor response function is also being used to represent the dielectric properties of the sample.


2007 ◽  
Vol 336-338 ◽  
pp. 272-274
Author(s):  
S.S. Cheng ◽  
J. Luo ◽  
Zhao Xian Xiong

Microwave ceramics of Ba(Mg0.2/3Zn0.8/3Nb2/3)O3 and Ba1-xSrx(Mg0.2/3Zn0.8/3Nb2/3)O3 were synthesized with conventional solid-state reaction method. Dielectric properties of the samples were studied as functions of compositions and sintering temperatures. Experimental results show that a higher Q×f value is reached by substituting Zn ions with Mg ions and a near-zero temperature coefficient of resonant frequency is obtained by replacing Ba ions with Sr ions.


2007 ◽  
Vol 280-283 ◽  
pp. 23-26
Author(s):  
J. Luo ◽  
Z.Y. Pang ◽  
Y.S. Lin ◽  
Zhao Xian Xiong

MnCO3 was added into ZnNb2O6 ceramics to obtain excellent microwave dielectric properties. The samples were prepared by conventional solid-state reaction method. The effects of the amount of MnCO3 on sintering temperatures, ceramic densities and contraction were systematically investigated. The crystalline structure of ceramic body was analyzed by XRD. The ceramic microstructure was observed by SEM. The dielectric properties of ZnNb2O6 ceramics were measured by a vector network analyzer at microwave frequency, which showed: er = 22.65, Q×f = 36700 GHz (loaded value) and tf = -40 ppm/°C.


Sign in / Sign up

Export Citation Format

Share Document