scholarly journals Red Quinoa Bran Extract Prevented Alcoholic Fatty Liver Disease via Increasing Antioxidative System and Repressing Fatty Acid Synthesis Factors in Mice Fed Alcohol Liquid Diet

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6973
Author(s):  
Ting-An Lin ◽  
Bo-Jun Ke ◽  
Shih-Cheng Cheng ◽  
Chun-Lin Lee

Alcohol is metabolized in liver. Chronic alcohol abuse results in alcohol-induced fatty liver and liver injury. Red quinoa (Chenopodium formosanum) was a traditional staple food for Taiwanese aborigines. Red quinoa bran (RQB) included strong anti-oxidative and anti-inflammatory polyphenolic compounds, but it was usually regarded as the agricultural waste. Therefore, this study is to investigate the effect of water and ethanol extraction products of RQB on the prevention of liquid alcoholic diet-induced acute liver injury in mice. The mice were given whole grain powder of red quinoa (RQ-P), RQB ethanol extract (RQB-E), RQB water extract (RQB-W), and rutin orally for 6 weeks, respectively. The results indicated that RQB-E, RQB-W, and rutin decreased alcoholic diet-induced activities of aspartate aminotransferase and alanine aminotransferase, and the levels of serum triglyceride, total cholesterol, and hepatic triglyceride. Hematoxylin and eosin staining of liver tissues showed that RQB-E and RQB-W reduced lipid droplet accumulation and liver injury. However, ethanol extraction process can gain high rutin and antioxidative agents contents from red quinoa, that showed strong effects in preventing alcoholic fatty liver disease and liver injury via increasing superoxide dismutase/catalase antioxidative system and repressing the expressions of fatty acid synthesis enzyme acetyl-CoA carboxylase.

2009 ◽  
Vol 29 (9) ◽  
pp. 1431-1438 ◽  
Author(s):  
Maud Lemoine ◽  
Vlad Ratziu ◽  
Minji Kim ◽  
Mustapha Maachi ◽  
Dominique Wendum ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2536 ◽  
Author(s):  
Jeongeun Mun ◽  
Shintae Kim ◽  
Ho-Geun Yoon ◽  
Yanghee You ◽  
Ok-Kyung Kim ◽  
...  

Our aim was to investigate whether hot water extract (CLW) of Curcuma longa L. could prevent non-alcoholic fatty liver disease (NAFLD). HepG2 cells were treated with free fatty acid (FFA) mixture (oleic acid: palmitic acid, 2:1) for 24 h to stimulate in vitro fatty liver. In addition, C57BL/6 mice were fed 60 kcal% high-fat (HF) diet for eight weeks to induce fatty liver in vivo. Intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) productions were increased by FFA and HF-diet, but supplementation with CLW significantly decreased these levels. CLW treatment ameliorated antioxidant activities that were suppressed by exposure to the FFA and HF-diet. Cluster of differentiation 36 (CD36) and fatty acid transport proteins (FATP2 and FATP5) were increased in HF-diet groups, while CLW suppressed their expression levels. Moreover, sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-coenzyme A carboxylase (ACC), and fatty acid synthase (FAS) expression levels were down-regulated in the CLW groups compared to HF-diet groups. On the other hand, 5′ adenosine monophosphate-activated protein kinase (AMPK), Peroxisome proliferator-activated receptor alpha (PPAR-α), and carnitine palmitoyltransferase 1 (CPT-1) expressions were up-regulated in the CLW groups. HF-diet fed mice showed high hepatic triglycerides (TG) content compared to the normal diet mice. However, the administration of CLW restored the hepatic TG level, indicating an inhibitory effect against lipid accumulation by CLW. These results suggest that CLW could be a potentially useful agent for the prevention of NAFLD through modulating fatty acid uptake.


2016 ◽  
Vol 113 (13) ◽  
pp. E1796-E1805 ◽  
Author(s):  
Geraldine Harriman ◽  
Jeremy Greenwood ◽  
Sathesh Bhat ◽  
Xinyi Huang ◽  
Ruiying Wang ◽  
...  

Simultaneous inhibition of the acetyl-CoA carboxylase (ACC) isozymes ACC1 and ACC2 results in concomitant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation and may favorably affect the morbidity and mortality associated with obesity, diabetes, and fatty liver disease. Using structure-based drug design, we have identified a series of potent allosteric protein–protein interaction inhibitors, exemplified by ND-630, that interact within the ACC phosphopeptide acceptor and dimerization site to prevent dimerization and inhibit the enzymatic activity of both ACC isozymes, reduce fatty acid synthesis and stimulate fatty acid oxidation in cultured cells and in animals, and exhibit favorable drug-like properties. When administered chronically to rats with diet-induced obesity, ND-630 reduces hepatic steatosis, improves insulin sensitivity, reduces weight gain without affecting food intake, and favorably affects dyslipidemia. When administered chronically to Zucker diabetic fatty rats, ND-630 reduces hepatic steatosis, improves glucose-stimulated insulin secretion, and reduces hemoglobin A1c (0.9% reduction). Together, these data suggest that ACC inhibition by representatives of this series may be useful in treating a variety of metabolic disorders, including metabolic syndrome, type 2 diabetes mellitus, and fatty liver disease.


Sign in / Sign up

Export Citation Format

Share Document